Aufgabenbeispiele von Bewegungsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


nach x Minuten

Beispiel:

Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (10|-30|10) (alle Angaben in Meter). Nach 4min ist er im Punkt B (250|-310|250) angelangt.
Wie hoch ist die Geschwindigkeit des Heißluftballons in km/h?
An welchem Ort befindet sich der Heißluftballon nach 10min?
Wie weit ist der Heißluftballon dann geflogen?
Berechne den Winkel mit dem der Heißluftballon steigt?
Wann hat er die Höhe von 2650m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( 240 -280 240 ) zurück.
In 1min legt es also den Vektor 1 4 ( 240 -280 240 ) = ( 60 -70 60 ) zurück. Dieser Vektor hat die Länge = 60 2 + (-70)2 + 60 2 = 12100 = 110.
Die Geschwindigkeit ist also v=110 m min = 6.6 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( 10 -30 10 ) +t ( 60 -70 60 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 10 min befindet es sich also im Punkt mit dem Ortsvektor
OP = ( 10 -30 10 ) +10 ( 60 -70 60 ) = ( 610 -730 610 ) , also im Punkt P(610|-730|610).

Das Bewegungsobjekt hat sich dann von A(10|-30|10) nach P(610|-730|610) bewegt, also um den Vektor AP = ( 600 -700 600 ) . Dessen Länge ist 600 2 + (-700)2 + 600 2 = 1210000 = 1100m.

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( 60 -70 60 ) ( 0 0 1 ) | | ( 60 -70 60 ) | | ( 0 0 1 ) | = | 600 + (-70)0 + 601 | 60 2 + (-70)2 + 60 2 0 2 + 02 + 1 2
= | 60 | 12100 1 0.5455 => α=33.1°

In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 60m (Änderung in der x3-Koordinate). Um von 10 auf 2650m (also 2640m) zu steigen (bzw. fallen), muss es also 2640 60 min = 44min lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A (-150|100|250) und fliegt mit einer konstanten Geschwindigkeit von 1980km/h in Richtung des Punktes B (-500|400|550) (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Wann hat die Rakete die (absolute) Höhe von 2050m erreicht? In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 1980000 m 3600 s = 550 m s .
Die Länge des Vektors AB = ( -350 300 300 ) ist (-350) 2 + 3002 + 300 2 = 302500 = 550 m.
Bei einer Geschwindigkeit von 550 m s . braucht er für diese Strecke 550 550 s = 1s.
Punkt B wird als nach 1s erreicht.

In einer s wird also der Vektor ( -350 300 300 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( -150 100 250 ) +t ( -350 300 300 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 300m (Änderung in der x3-Koordinate). Um von 250 auf 2050m (also 1800m) zu steigen (bzw. fallen), muss es also 1800 300 s = 6s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( -150 100 250 ) +6 ( -350 300 300 ) = ( -2250 1900 2050 )
Also im Punkt P(-2250|1900|2050).

Höhe nach x Kilometern

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (10|-20|30) (alle Angaben in Meter). Nach 3s ist es im Punkt B (-110|-140|90) angelangt.
Welche Höhe hat das Flugzeug, wenn es 8,4 km zurückgelegt hat?

Lösung einblenden

Das Bewegungsobjekt legt in 3 s den Vektor AB = ( -120 -120 60 ) zurück.
In 1s legt es also den Vektor 1 3 ( -120 -120 60 ) = ( -40 -40 20 ) zurück.
Die Geradengleichung x = ( 10 -20 30 ) +t ( -40 -40 20 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge = (-40) 2 + (-40)2 + 20 2 = 3600 = 60.
Die Geschwindigkeit ist also v=60 m s
Für die Strecke von 8.4 km braucht es also 8400 60 s = 140s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( 10 -20 30 ) +140 ( -40 -40 20 ) = ( -5590 -5620 2830 ) , also im Punkt P(-5590|-5620|2830).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 2830m.

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (-58|-10|0,2) . Nach 1s ist sie im Punkt B (-49|-4|0,6) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -10 8 0,7 ) +t ( -5 -1 0,3 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 1s den Vektor AB = ( 9 6 0.4 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -58 -10 0.2 ) +t ( 9 6 0.4 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,3t +0,7 = 0,4t +0,2 | -0,7 -0,4t
-0,1t = -0,5 |:(-0,1 )
t = 5

nach 5 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,35 +0,7 = 2.2 = 0,45 +0,2


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( -10 8 0.7 ) +s ( -5 -1 0.3 ) = ( -58 -10 0.2 ) +t ( 9 6 0.4 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-10-5s= -58+9t8-1s= -10+6t

-5 s -9 t = -48 (I) -1 s -6 t = -18 (II)
-5 s -9 t = -48 (I) -1 s -6 t = -18 (II)

langsame Rechnung einblenden1·(I) -5·(II)

-5 s -9 t = -48 (I) ( -5 +5 )s +( -9 +30 )t = ( -48 +90 ) (II)
-5 s -9 t = -48 (I) +21 t = 42 (II)
Zeile (II): +21 t = 42

t = 2

eingesetzt in Zeile (I):

-5 s -9 ·(2 ) = -48 | +18
-5 s = -30 | : (-5)

s = 6

L={( 6 |2 )}

Das heißt also, dass die Drohne F1 nach 6s und die Seilbahngondel F2 nach 2s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 6s bei ( -10 8 0.7 ) +6 ( -5 -1 0.3 ) = ( -40 2 2.5 ) , während die Seilbahngondel F2 nach 6s bei ( -58 -10 0.2 ) +6 ( 9 6 0.4 ) = ( -4 26 2.6 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-40|2|2.5) und P2(-4|26|2.6):
P1P2 = ( -4-( - 40 ) 26-2 2.6-2.5 ) = ( 36 24 0.1 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 36 24 0.1 ) | = 36 2 + 242 + 0.1 2 = 1872.01 ≈ 43.266730867954

Der Abstand der beiden Objekte nach 6s ist also 1872.2929 m ≈ 43.27 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( -10 8 0.7 ) +s ( -5 -1 0.3 ) = ( -58 -10 0.2 ) +t ( 9 6 0.4 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-10-5s= -58+9t8-1s= -10+6t

-5 s -9 t = -48 (I) -1 s -6 t = -18 (II)
-5 s -9 t = -48 (I) -1 s -6 t = -18 (II)

langsame Rechnung einblenden1·(I) -5·(II)

-5 s -9 t = -48 (I) ( -5 +5 )s +( -9 +30 )t = ( -48 +90 ) (II)
-5 s -9 t = -48 (I) +21 t = 42 (II)
Zeile (II): +21 t = 42

t = 2

eingesetzt in Zeile (I):

-5 s -9 ·(2 ) = -48 | +18
-5 s = -30 | : (-5)

s = 6

L={( 6 |2 )}

Das heißt also, dass die Drohne F1 nach 6s und die Seilbahngondel F2 nach 2s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 6s bei ( -10 8 0.7 ) +6 ( -5 -1 0.3 ) = ( -40 2 2.5 ) , während die Seilbahngondel F2 nach 2s bei ( -58 -10 0.2 ) +2 ( 9 6 0.4 ) = ( -40 2 1 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

2.5 - 1 = 1.5 m

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 7 7 2 ) +t ( -2 11 -10 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (19|-9|30) . Nach 1min ist es im Punkt B (15|3|20) angelangt.
Wie weit sind die beiden Flugzeuge nach 2min von einander entfernt?
Wie groß ist der kleinste Abstand der beiden Flugbahnen?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Flugzeug F2 legt in 1min den Vektor AB = ( -4 12 -10 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 19 -9 30 ) +t ( -4 12 -10 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Das Flugzeug F1 ist nach 2min an der Stelle P1 ( 7 7 2 ) +2 ( -2 11 -10 ) = ( 3 29 -18 ) und das Flugzeug F2 an der Stelle P2 ( 19 -9 30 ) +2 ( -4 12 -10 ) = ( 11 15 10 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(3|29|-18) und P2(11|15|10):
P1P2 = ( 11-3 15-29 10-( - 18 ) ) = ( 8 -14 28 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 8 -14 28 ) | = 8 2 + (-14)2 + 28 2 = 1044 ≈ 32.310988842807

Der Abstand ist also ca. 32.31 km.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( 19 -9 30 ) +t ( -4 12 -10 ) enthält und parallel zur Geraden g: x = ( 7 7 2 ) +t ( -2 11 -10 ) ist, also x = ( 19 -9 30 ) + r ( -4 12 -10 ) + s ( -2 11 -10 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( -2 11 -10 ) × ( -4 12 -10 ) = ( 11( - 10 )-( - 10 )12 -10( - 4 )-( - 2 )( - 10 ) -212-11( - 4 ) ) = ( -110-( - 120 ) 40-20 -24-( - 44 ) ) = ( 10 20 20 ) = 10⋅ ( 1 2 2 )

Wenn wir den Aufpunkt von h Ah(19|-9|30) in die allgemeine Ebenengleichung x 1 +2 x 2 +2 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

x 1 +2 x 2 +2 x 3 = 61

Nun können wir den Abstand zwischen der Geraden g: x = ( 7 7 2 ) +t ( -2 11 -10 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (7|7|2), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 1 7+2 7+2 2-61 | 1 2 + 2 2 + 2 2
= | -36 | 9 = 36 3 = 12

Der Abstand der beiden Bewegungsbahnen beträgt somit 12 km


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 7 -2 t | 7 +11 t | 2 -10 t ) und G2 t ( 19 -4 t | -9 +12 t | 30 -10 t ) minimal wird.

d(t)= | ( 19-4t -9+12t 30-10t ) - ( 7-2t 7+11t 2-10t ) | = | ( 12-2t -16+1t 28+0t ) | soll also minimal werden.

d(t)= ( -2x +12 ) 2 + ( x -16 ) 2 + ( 0 +28 ) 2
= 4 x 2 -48x +144 + x 2 -32x +256 +784
= 5 x 2 -80x +1184

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -80 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 8 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 8 .

der minimale Abstand ist also d( 8 )= 5 8 2 -808 +1184 = 864 ≈ 29.4 km

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (-10|-50|30) und fliegt mit einer Geschwindigkeit von 432km/h in Richtung des Punktes B (150|110|110) (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Wann hat das Flugzeug die (absolute) Höhe von 1070m erreicht?
In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 432000 m 3600 s = 120 m s .
Die Länge des Vektors AB = ( 160 160 80 ) ist 160 2 + 1602 + 80 2 = 57600 = 240 m.
Bei einer Geschwindigkeit von 120 m s . braucht er für diese Strecke 240 120 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( 160 160 80 ) = ( 80 80 40 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( -10 -50 30 ) +t ( 80 80 40 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 30 auf 1070m (also 1040m) zu steigen (bzw. fallen), muss es also 1040 40 s = 26s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( -10 -50 30 ) +26 ( 80 80 40 ) = ( 2070 2030 1070 )
Also im Punkt P(2070|2030|1070).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 2 5 0 ) +t ( -10 -2 11 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (40|21|-28) . Nach 4min ist es im Punkt B (0|5|20) angelangt.
Wie weit sind die beiden Flugzeuge nach 2min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( -40 -16 48 ) zurück.
In 1min legt es also den Vektor 1 4 ( -40 -16 48 ) = ( -10 -4 12 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 40 21 -28 ) +t ( -10 -4 12 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 2min an der Stelle P1 ( 2 5 0 ) +2 ( -10 -2 11 ) = ( -18 1 22 ) und F2 an der Stelle P2 ( 40 21 -28 ) +2 ( -10 -4 12 ) = ( 20 13 -4 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-18|1|22) und P2(20|13|-4):
P1P2 = ( 20-( - 18 ) 13-1 -4-22 ) = ( 38 12 -26 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 38 12 -26 ) | = 38 2 + 122 + (-26) 2 = 2264 ≈ 47.581509013481

Der Abstand ist also ca. 47.58 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 2 -10 t | 5 -2 t | 0 +11 t ) und G2 t ( 40 -10 t | 21 -4 t | -28 +12 t ) minimal wird.

d(t)= | ( 40-10t 21-4t -28+12t ) - ( 2-10t 5-2t 0+11t ) | = | ( 38+0t 16-2t -28+1t ) | soll also minimal werden.

d(t)= ( 0 +38 ) 2 + ( -2x +16 ) 2 + ( x -28 ) 2
= 1444 +4 x 2 -64x +256 + x 2 -56x +784
= 5 x 2 -120x +2484

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -120 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 12 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 12 .

der minimale Abstand ist also d( 12 )= 5 12 2 -12012 +2484 = 42 ≈ 42