Aufgabenbeispiele von Bewegungsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


nach x Minuten

Beispiel:

Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (-200|200|0) (alle Angaben in Meter). Nach 2s ist es im Punkt B (400|-100|200) angelangt.
Wie hoch ist die Geschwindigkeit der Rakete in km/h?
Wo ist die Rakete nach 9s?
Wie weit ist die Rakete dann geflogen?
Berechne den Winkel mit dem die Rakete steigt?
Wann hat die Rakete die Höhe von 2600m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 2s den Vektor AB = ( 600 -300 200 ) zurück.
In 1s legt es also den Vektor 1 2 ( 600 -300 200 ) = ( 300 -150 100 ) zurück. Dieser Vektor hat die Länge = 300 2 + (-150)2 + 100 2 = 122500 = 350.
Die Geschwindigkeit ist also v=350 m s = 1260 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( -200 200 0 ) +t ( 300 -150 100 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( -200 200 0 ) +9 ( 300 -150 100 ) = ( 2500 -1150 900 ) , also im Punkt P(2500|-1150|900).

Das Bewegungsobjekt hat sich dann von A(-200|200|0) nach P(2500|-1150|900) bewegt, also um den Vektor AP = ( 2700 -1350 900 ) . Dessen Länge ist 2700 2 + (-1350)2 + 900 2 = 9922500 = 3150m.

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( 300 -150 100 ) ( 0 0 1 ) | | ( 300 -150 100 ) | | ( 0 0 1 ) | = | 3000 + (-150)0 + 1001 | 300 2 + (-150)2 + 100 2 0 2 + 02 + 1 2
= | 100 | 122500 1 0.2857 => α=16.6°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 100m (Änderung in der x3-Koordinate). Um von 0 auf 2600m (also 2600m) zu steigen (bzw. fallen), muss es also 2600 100 s = 26s lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A (-250|-150|150) und fliegt mit einer konstanten Geschwindigkeit von 1620km/h in Richtung des Punktes B (-950|-550|550) (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Wann hat die Rakete die (absolute) Höhe von 4950m erreicht? In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 1620000 m 3600 s = 450 m s .
Die Länge des Vektors AB = ( -700 -400 400 ) ist (-700) 2 + (-400)2 + 400 2 = 810000 = 900 m.
Bei einer Geschwindigkeit von 450 m s . braucht er für diese Strecke 900 450 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( -700 -400 400 ) = ( -350 -200 200 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( -250 -150 150 ) +t ( -350 -200 200 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 200m (Änderung in der x3-Koordinate). Um von 150 auf 4950m (also 4800m) zu steigen (bzw. fallen), muss es also 4800 200 s = 24s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( -250 -150 150 ) +24 ( -350 -200 200 ) = ( -8650 -4950 4950 )
Also im Punkt P(-8650|-4950|4950).

Höhe nach x Kilometern

Beispiel:

Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (3|0|0) (alle Angaben in Meter). Nach 1min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B (9|-6|-3) angelangt.
Wie tief ist das Uboot, wenn es 0,72 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)

Lösung einblenden

Das Bewegungsobjekt legt in 1 min den Vektor AB = ( 6 -6 -3 ) zurück.
Die Geradengleichung x = ( 3 0 0 ) +t ( 6 -6 -3 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge = 6 2 + (-6)2 + (-3) 2 = 81 = 9.
Die Geschwindigkeit ist also v=9 m min
Für die Strecke von 0.72 km braucht es also 720 9 min = 80min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( 3 0 0 ) +80 ( 6 -6 -3 ) = ( 483 -480 -240 ) , also im Punkt P(483|-480|-240).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -240m.

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (61|10|2,2) . Nach 4s ist sie im Punkt B (57|22|3) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( 3 4 0,6 ) +t ( 6 2 0,4 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 4s den Vektor AB = ( -4 12 0.8 ) zurück.
In 1s legt es also den Vektor 1 4 ( -4 12 0.8 ) = ( -1 3 0.2 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 61 10 2.2 ) +t ( -1 3 0.2 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,4t +0,6 = 0,2t +2,2 | -0,6 -0,2t
0,2t = 1,6 |:0,2
t = 8

nach 8 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,48 +0,6 = 3.8 = 0,28 +2,2


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( 3 4 0.6 ) +s ( 6 2 0.4 ) = ( 61 10 2.2 ) +t ( -1 3 0.2 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

3+6s= 61-1t4+2s= 10+3t

6 s +t = 58 (I) 2 s -3 t = 6 (II)
6 s +t = 58 (I) 2 s -3 t = 6 (II)

langsame Rechnung einblenden1·(I) -3·(II)

6 s 1 t = 58 (I) ( 6 -6 )s +( 1 +9 )t = ( 58 -18 ) (II)
6 s +t = 58 (I) +10 t = 40 (II)
Zeile (II): +10 t = 40

t = 4

eingesetzt in Zeile (I):

6 s +(4 ) = 58 | -4
6 s = 54 | : 6

s = 9

L={( 9 |4 )}

Das heißt also, dass die Drohne F1 nach 9s und die Seilbahngondel F2 nach 4s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 9s bei ( 3 4 0.6 ) +9 ( 6 2 0.4 ) = ( 57 22 4.2 ) , während die Seilbahngondel F2 nach 9s bei ( 61 10 2.2 ) +9 ( -1 3 0.2 ) = ( 52 37 4 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(57|22|4.2) und P2(52|37|4):
P1P2 = ( 52-57 37-22 4-4.2 ) = ( -5 15 -0.2 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -5 15 -0.2 ) | = (-5) 2 + 152 + (-0.2) 2 = 250.04 ≈ 15.812653161314

Der Abstand der beiden Objekte nach 9s ist also 249.9561 m ≈ 15.81 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( 3 4 0.6 ) +s ( 6 2 0.4 ) = ( 61 10 2.2 ) +t ( -1 3 0.2 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

3+6s= 61-1t4+2s= 10+3t

6 s +t = 58 (I) 2 s -3 t = 6 (II)
6 s +t = 58 (I) 2 s -3 t = 6 (II)

langsame Rechnung einblenden1·(I) -3·(II)

6 s 1 t = 58 (I) ( 6 -6 )s +( 1 +9 )t = ( 58 -18 ) (II)
6 s +t = 58 (I) +10 t = 40 (II)
Zeile (II): +10 t = 40

t = 4

eingesetzt in Zeile (I):

6 s +(4 ) = 58 | -4
6 s = 54 | : 6

s = 9

L={( 9 |4 )}

Das heißt also, dass die Drohne F1 nach 9s und die Seilbahngondel F2 nach 4s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 9s bei ( 3 4 0.6 ) +9 ( 6 2 0.4 ) = ( 57 22 4.2 ) , während die Seilbahngondel F2 nach 4s bei ( 61 10 2.2 ) +4 ( -1 3 0.2 ) = ( 57 22 3 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

4.2 - 3 = 1.2 m

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 3 -10 0 ) +t ( -30 -2 11 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (65|1|-18) . Nach 2min ist es im Punkt B (5|-7|6) angelangt.
Wie weit sind die beiden Flugzeuge nach 5min von einander entfernt?
Wie groß ist der kleinste Abstand der beiden Flugbahnen?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Flugzeug F2 legt in 2min den Vektor AB = ( -60 -8 24 ) zurück.
In 1min legt es also den Vektor 1 2 ( -60 -8 24 ) = ( -30 -4 12 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 65 1 -18 ) +t ( -30 -4 12 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Das Flugzeug F1 ist nach 5min an der Stelle P1 ( 3 -10 0 ) +5 ( -30 -2 11 ) = ( -147 -20 55 ) und das Flugzeug F2 an der Stelle P2 ( 65 1 -18 ) +5 ( -30 -4 12 ) = ( -85 -19 42 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-147|-20|55) und P2(-85|-19|42):
P1P2 = ( -85-( - 147 ) -19-( - 20 ) 42-55 ) = ( 62 1 -13 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 62 1 -13 ) | = 62 2 + 12 + (-13) 2 = 4014 ≈ 63.356136245829

Der Abstand ist also ca. 63.36 km.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( 65 1 -18 ) +t ( -30 -4 12 ) enthält und parallel zur Geraden g: x = ( 3 -10 0 ) +t ( -30 -2 11 ) ist, also x = ( 65 1 -18 ) + r ( -30 -4 12 ) + s ( -30 -2 11 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( -30 -2 11 ) × ( -30 -4 12 ) = ( -212-11( - 4 ) 11( - 30 )-( - 30 )12 -30( - 4 )-( - 2 )( - 30 ) ) = ( -24-( - 44 ) -330-( - 360 ) 120-60 ) = ( 20 30 60 ) = 10⋅ ( 2 3 6 )

Wenn wir den Aufpunkt von h Ah(65|1|-18) in die allgemeine Ebenengleichung 2 x 1 +3 x 2 +6 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

2 x 1 +3 x 2 +6 x 3 = 25

Nun können wir den Abstand zwischen der Geraden g: x = ( 3 -10 0 ) +t ( -30 -2 11 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (3|-10|0), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 2 3+3 ( - 10 )+6 0-25 | 2 2 + 3 2 + 6 2
= | -49 | 49 = 49 7 = 7

Der Abstand der beiden Bewegungsbahnen beträgt somit 7 km


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 3 -30 t | -10 -2 t | 0 +11 t ) und G2 t ( 65 -30 t | 1 -4 t | -18 +12 t ) minimal wird.

d(t)= | ( 65-30t 1-4t -18+12t ) - ( 3-30t -10-2t 0+11t ) | = | ( 62+0t 11-2t -18+1t ) | soll also minimal werden.

d(t)= ( 0 +62 ) 2 + ( -2x +11 ) 2 + ( x -18 ) 2
= 3844 +4 x 2 -44x +121 + x 2 -36x +324
= 5 x 2 -80x +4289

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -80 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 8 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 8 .

der minimale Abstand ist also d( 8 )= 5 8 2 -808 +4289 = 63 ≈ 63 km

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A (100|-100|200) und fliegt mit einer konstanten Geschwindigkeit von 1620km/h in Richtung des Punktes B (-600|-500|600) (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Wann hat die Rakete die (absolute) Höhe von 3000m erreicht? In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 1620000 m 3600 s = 450 m s .
Die Länge des Vektors AB = ( -700 -400 400 ) ist (-700) 2 + (-400)2 + 400 2 = 810000 = 900 m.
Bei einer Geschwindigkeit von 450 m s . braucht er für diese Strecke 900 450 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( -700 -400 400 ) = ( -350 -200 200 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( 100 -100 200 ) +t ( -350 -200 200 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 200m (Änderung in der x3-Koordinate). Um von 200 auf 3000m (also 2800m) zu steigen (bzw. fallen), muss es also 2800 200 s = 14s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( 100 -100 200 ) +14 ( -350 -200 200 ) = ( -4800 -2900 3000 )
Also im Punkt P(-4800|-2900|3000).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( -10 10 -1 ) +t ( 8 -1 -13 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (-19|14|31) . Nach 4min ist es im Punkt B (13|14|-25) angelangt.
Wie weit sind die beiden Flugzeuge nach 4min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( 32 0 -56 ) zurück.
In 1min legt es also den Vektor 1 4 ( 32 0 -56 ) = ( 8 0 -14 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -19 14 31 ) +t ( 8 0 -14 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 4min an der Stelle P1 ( -10 10 -1 ) +4 ( 8 -1 -13 ) = ( 22 6 -53 ) und F2 an der Stelle P2 ( -19 14 31 ) +4 ( 8 0 -14 ) = ( 13 14 -25 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(22|6|-53) und P2(13|14|-25):
P1P2 = ( 13-22 14-6 -25-( - 53 ) ) = ( -9 8 28 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -9 8 28 ) | = (-9) 2 + 82 + 28 2 = 929 ≈ 30.479501308256

Der Abstand ist also ca. 30.48 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -10 +8 t | 10 -1 t | -1 -13 t ) und G2 t ( -19 +8 t | 14 +0 t | 31 -14 t ) minimal wird.

d(t)= | ( -19+8t 14+0t 31-14t ) - ( -10+8t 10-1t -1-13t ) | = | ( -9+0t 4+1t 32-1t ) | soll also minimal werden.

d(t)= ( 0 -9 ) 2 + ( x +4 ) 2 + ( -x +32 ) 2
= 81 + x 2 +8x +16 + x 2 -64x +1024
= 2 x 2 -56x +1121

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 4x -56 +0

f''(t)= 4 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 14 als potentielle Extremstelle.

Wegen f''(t)= 4 +0+0 >0 ist also der Tiefpunkt bei t= 14 .

der minimale Abstand ist also d( 14 )= 2 14 2 -5614 +1121 = 27 ≈ 27