Aufgabenbeispiele von Bewegungsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


nach x Minuten

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (-20|20|50) (alle Angaben in Meter). Nach 3s ist es im Punkt B (-260|-100|80) angelangt. Wie hoch ist die Geschwindigkeit des Flugzeugs in km/h?
An welchem Ort befindet sich das Flugzeug nach 7s?
Wie weit ist das Flugzeug dann geflogen?
Berechne den Winkel mit dem das Flugzeug steigt?
Wann hat das Flugzeug die Höhe von 320m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 3s den Vektor AB = ( -240 -120 30 ) zurück.
In 1s legt es also den Vektor 1 3 ( -240 -120 30 ) = ( -80 -40 10 ) zurück. Dieser Vektor hat die Länge = (-80) 2 + (-40)2 + 10 2 = 8100 = 90.
Die Geschwindigkeit ist also v=90 m s = 324 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( -20 20 50 ) +t ( -80 -40 10 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( -20 20 50 ) +7 ( -80 -40 10 ) = ( -580 -260 120 ) , also im Punkt P(-580|-260|120).

Das Bewegungsobjekt hat sich dann von A(-20|20|50) nach P(-580|-260|120) bewegt, also um den Vektor AP = ( -560 -280 70 ) . Dessen Länge ist (-560) 2 + (-280)2 + 70 2 = 396900 = 630m.

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( -80 -40 10 ) ( 0 0 1 ) | | ( -80 -40 10 ) | | ( 0 0 1 ) | = | (-80)0 + (-40)0 + 101 | (-80) 2 + (-40)2 + 10 2 0 2 + 02 + 1 2
= | 10 | 8100 1 0.1111 => α=6.4°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate). Um von 50 auf 320m (also 270m) zu steigen (bzw. fallen), muss es also 270 10 s = 27s lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A (-150|-200|0) und fliegt mit einer konstanten Geschwindigkeit von 1620km/h in Richtung des Punktes B (-550|-900|400) (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Wann hat die Rakete die (absolute) Höhe von 5200m erreicht? In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 1620000 m 3600 s = 450 m s .
Die Länge des Vektors AB = ( -400 -700 400 ) ist (-400) 2 + (-700)2 + 400 2 = 810000 = 900 m.
Bei einer Geschwindigkeit von 450 m s . braucht er für diese Strecke 900 450 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( -400 -700 400 ) = ( -200 -350 200 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( -150 -200 0 ) +t ( -200 -350 200 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 200m (Änderung in der x3-Koordinate). Um von 0 auf 5200m (also 5200m) zu steigen (bzw. fallen), muss es also 5200 200 s = 26s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( -150 -200 0 ) +26 ( -200 -350 200 ) = ( -5350 -9300 5200 )
Also im Punkt P(-5350|-9300|5200).

Höhe nach x Kilometern

Beispiel:

Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (-24|12|0) (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 2min ist er im Punkt B (-72|60|24) angelangt.
Welche Höhe hat der Heißluftballon, wenn er 6,48 km zurückgelegt hat?

Lösung einblenden

Das Bewegungsobjekt legt in 2 min den Vektor AB = ( -48 48 24 ) zurück.
In 1min legt es also den Vektor 1 2 ( -48 48 24 ) = ( -24 24 12 ) zurück.
Die Geradengleichung x = ( -24 12 0 ) +t ( -24 24 12 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge = (-24) 2 + 242 + 12 2 = 1296 = 36.
Die Geschwindigkeit ist also v=36 m min
Für die Strecke von 6.48 km braucht es also 6480 36 min = 180min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( -24 12 0 ) +180 ( -24 24 12 ) = ( -4344 4332 2160 ) , also im Punkt P(-4344|4332|2160).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 2160m.

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (4|6|0,9) . Nach 1s ist sie im Punkt B (-3|4|1) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( 11 -82 0,1 ) +t ( -7 8 0,3 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 1s den Vektor AB = ( -7 -2 0.1 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 4 6 0.9 ) +t ( -7 -2 0.1 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,3t +0,1 = 0,1t +0,9 | -0,1 -0,1t
0,2t = 0,8 |:0,2
t = 4

nach 4 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,34 +0,1 = 1.3 = 0,14 +0,9


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( 11 -82 0.1 ) +s ( -7 8 0.3 ) = ( 4 6 0.9 ) +t ( -7 -2 0.1 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

11-7s= 4-7t-82+8s= 6-2t

-7 s +7 t = -7 (I) 8 s +2 t = 88 (II)
-7 s +7 t = -7 (I) 8 s +2 t = 88 (II)

langsame Rechnung einblenden8·(I) + 7·(II)

-7 s 7 t = -7 (I) ( -56 +56 )s +( 56 +14 )t = ( -56 +616 ) (II)
-7 s +7 t = -7 (I) +70 t = 560 (II)
Zeile (II): +70 t = 560

t = 8

eingesetzt in Zeile (I):

-7 s +7 ·(8 ) = -7 | -56
-7 s = -63 | : (-7)

s = 9

L={( 9 |8 )}

Das heißt also, dass die Drohne F1 nach 9s und die Seilbahngondel F2 nach 8s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 9s bei ( 11 -82 0.1 ) +9 ( -7 8 0.3 ) = ( -52 -10 2.8 ) , während die Seilbahngondel F2 nach 9s bei ( 4 6 0.9 ) +9 ( -7 -2 0.1 ) = ( -59 -12 1.8 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-52|-10|2.8) und P2(-59|-12|1.8):
P1P2 = ( -59-( - 52 ) -12-( - 10 ) 1.8-2.8 ) = ( -7 -2 -1 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -7 -2 -1 ) | = (-7) 2 + (-2)2 + (-1) 2 = 54 ≈ 7.3484692283495

Der Abstand der beiden Objekte nach 9s ist also 54.0225 m ≈ 7.35 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( 11 -82 0.1 ) +s ( -7 8 0.3 ) = ( 4 6 0.9 ) +t ( -7 -2 0.1 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

11-7s= 4-7t-82+8s= 6-2t

-7 s +7 t = -7 (I) 8 s +2 t = 88 (II)
-7 s +7 t = -7 (I) 8 s +2 t = 88 (II)

langsame Rechnung einblenden8·(I) + 7·(II)

-7 s 7 t = -7 (I) ( -56 +56 )s +( 56 +14 )t = ( -56 +616 ) (II)
-7 s +7 t = -7 (I) +70 t = 560 (II)
Zeile (II): +70 t = 560

t = 8

eingesetzt in Zeile (I):

-7 s +7 ·(8 ) = -7 | -56
-7 s = -63 | : (-7)

s = 9

L={( 9 |8 )}

Das heißt also, dass die Drohne F1 nach 9s und die Seilbahngondel F2 nach 8s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 9s bei ( 11 -82 0.1 ) +9 ( -7 8 0.3 ) = ( -52 -10 2.8 ) , während die Seilbahngondel F2 nach 8s bei ( 4 6 0.9 ) +8 ( -7 -2 0.1 ) = ( -52 -10 1.7 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

2.8 - 1.7 = 1.1 m

Zwei Objekte Aufgabe - Abstände

Beispiel:

Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (-15|37|-10) (alle Angaben in Meter). Nach 3min ist er im Punkt B (21|-35|38) angelangt.
Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -9 6 0 ) +t ( 13 -24 15 ) . (alle Koordinaten in m; t in Minuten seit Beobachtungsbeginn).
Wie weit sind der Heißluftballon und die Drohne nach 2min von einander entfernt?
Wie groß ist der kleinste Abstand der beiden Flugbahnen?
Zu welchem Zeitpunkt kommen sich die Drohne und der Heißluftballon am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Der Heißluftballon legt in 3min den Vektor AB = ( 36 -72 48 ) zurück.
In 1min legt es also den Vektor 1 3 ( 36 -72 48 ) = ( 12 -24 16 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -15 37 -10 ) +t ( 12 -24 16 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Die Drohne ist nach 2min an der Stelle P1 ( -9 6 0 ) +2 ( 13 -24 15 ) = ( 17 -42 30 ) und der Heißluftballon an der Stelle P2 ( -15 37 -10 ) +2 ( 12 -24 16 ) = ( 9 -11 22 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(17|-42|30) und P2(9|-11|22):
P1P2 = ( 9-17 -11-( - 42 ) 22-30 ) = ( -8 31 -8 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -8 31 -8 ) | = (-8) 2 + 312 + (-8) 2 = 1089 = 33

Der Abstand ist also ca. 33 m.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( -15 37 -10 ) +t ( 12 -24 16 ) enthält und parallel zur Geraden g: x = ( -9 6 0 ) +t ( 13 -24 15 ) ist, also x = ( -15 37 -10 ) + r ( 12 -24 16 ) + s ( 13 -24 15 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( 13 -24 15 ) × ( 12 -24 16 ) = ( -2416-15( - 24 ) 1512-1316 13( - 24 )-( - 24 )12 ) = ( -384-( - 360 ) 180-208 -312-( - 288 ) ) = ( -24 -28 -24 ) = -4⋅ ( 6 7 6 )

Wenn wir den Aufpunkt von h Ah(-15|37|-10) in die allgemeine Ebenengleichung 6 x 1 +7 x 2 +6 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

6 x 1 +7 x 2 +6 x 3 = 109

Nun können wir den Abstand zwischen der Geraden g: x = ( -9 6 0 ) +t ( 13 -24 15 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (-9|6|0), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 6 ( - 9 )+7 6+6 0-109 | 6 2 + 7 2 + 6 2
= | -121 | 121 = 121 11 = 11

Der Abstand der beiden Bewegungsbahnen beträgt somit 11 m


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -9 +13 t | 6 -24 t | 0 +15 t ) und G2 t ( -15 +12 t | 37 -24 t | -10 +16 t ) minimal wird.

d(t)= | ( -15+12t 37-24t -10+16t ) - ( -9+13t 6-24t 0+15t ) | = | ( -6-1t 31+0t -10+1t ) | soll also minimal werden.

d(t)= ( -x -6 ) 2 + ( 0 +31 ) 2 + ( x -10 ) 2
= x 2 +12x +36 +961 + x 2 -20x +100
= 2 x 2 -8x +1097

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 4x -8 +0

f''(t)= 4 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 2 als potentielle Extremstelle.

Wegen f''(t)= 4 +0+0 >0 ist also der Tiefpunkt bei t= 2 .

der minimale Abstand ist also d( 2 )= 2 2 2 -82 +1097 = 33 ≈ 33 m

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (40|30|30) und fliegt mit einer Geschwindigkeit von 324km/h in Richtung des Punktes B (160|-90|90) (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Wann hat das Flugzeug die (absolute) Höhe von 570m erreicht?
In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 324000 m 3600 s = 90 m s .
Die Länge des Vektors AB = ( 120 -120 60 ) ist 120 2 + (-120)2 + 60 2 = 32400 = 180 m.
Bei einer Geschwindigkeit von 90 m s . braucht er für diese Strecke 180 90 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( 120 -120 60 ) = ( 60 -60 30 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( 40 30 30 ) +t ( 60 -60 30 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 30m (Änderung in der x3-Koordinate). Um von 30 auf 570m (also 540m) zu steigen (bzw. fallen), muss es also 540 30 s = 18s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( 40 30 30 ) +18 ( 60 -60 30 ) = ( 1120 -1050 570 )
Also im Punkt P(1120|-1050|570).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( 6 -5 2 ) +t ( 5 0 -5 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (-6|4|23) . Nach 1min ist es im Punkt B (0|2|18) angelangt.
Wie weit sind die beiden Flugzeuge nach 5min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 1min den Vektor AB = ( 6 -2 -5 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -6 4 23 ) +t ( 6 -2 -5 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 5min an der Stelle P1 ( 6 -5 2 ) +5 ( 5 0 -5 ) = ( 31 -5 -23 ) und F2 an der Stelle P2 ( -6 4 23 ) +5 ( 6 -2 -5 ) = ( 24 -6 -2 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(31|-5|-23) und P2(24|-6|-2):
P1P2 = ( 24-31 -6-( - 5 ) -2-( - 23 ) ) = ( -7 -1 21 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -7 -1 21 ) | = (-7) 2 + (-1)2 + 21 2 = 491 ≈ 22.15851980616

Der Abstand ist also ca. 22.16 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 6 +5 t | -5 +0 t | 2 -5 t ) und G2 t ( -6 +6 t | 4 -2 t | 23 -5 t ) minimal wird.

d(t)= | ( -6+6t 4-2t 23-5t ) - ( 6+5t -5+0t 2-5t ) | = | ( -12+1t 9-2t 21+0t ) | soll also minimal werden.

d(t)= ( x -12 ) 2 + ( -2x +9 ) 2 + ( 0 +21 ) 2
= x 2 -24x +144 +4 x 2 -36x +81 +441
= 5 x 2 -60x +666

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -60 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 6 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 6 .

der minimale Abstand ist also d( 6 )= 5 6 2 -606 +666 = 486 ≈ 22