Aufgabenbeispiele von mit Substitution

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Polynomgleichungen (Substitution)

Beispiel:

Löse die folgende Gleichung:

x 4 - x 2 -12 = 0

Lösung einblenden
x 4 - x 2 -12 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 - u -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

u1,2 = +1 ± 1 +48 2

u1,2 = +1 ± 49 2

u1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

u2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -2 ; 2 }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x -9 e x +14 = 0

Lösung einblenden
e 2x -9 e x +14 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -9u +14 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +9 ± ( -9 ) 2 -4 · 1 · 14 21

u1,2 = +9 ± 81 -56 2

u1,2 = +9 ± 25 2

u1 = 9 + 25 2 = 9 +5 2 = 14 2 = 7

u2 = 9 - 25 2 = 9 -5 2 = 4 2 = 2

Rücksubstitution:

u1: e x = 7

e x = 7 |ln(⋅)
x1 = ln( 7 ) ≈ 1.9459

u2: e x = 2

e x = 2 |ln(⋅)
x2 = ln( 2 ) ≈ 0.6931

L={ ln( 2 ) ; ln( 7 ) }

trigonometrische Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 + 1 2 ( sin( x ) ) 2 - 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 + 1 2 ( sin( x ) ) 2 - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 + 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 + 1 2 u - 1 2 ) = 0

2 u 2 + u -1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -1 ± 1 2 -4 · 2 · ( -1 ) 22

u1,2 = -1 ± 1 +8 4

u1,2 = -1 ± 9 4

u1 = -1 + 9 4 = -1 +3 4 = 2 4 = 0,5

u2 = -1 - 9 4 = -1 -3 4 = -4 4 = -1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 0,5

( sin( x ) ) 2 = 0,5 | 2

1. Fall

sin( x ) = - 0,5 -0,707
canvas
sin( x ) = -0,707 |sin-1(⋅)

Der WTR liefert nun als Wert -0.78524716339515

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,498

1. Fall:

x1 = 5,498

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,498 =-2.3564 bzw. bei -2.3564+2π= 3,927 liegen muss.

2. Fall:

x2 = 3,927

2. Fall

sin( x ) = 0,5 0,707
canvas
sin( x ) = 0,707 |sin-1(⋅)

Der WTR liefert nun als Wert 0.78524716339515

1. Fall:

x3 = 0,785

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,785 = 2,356 liegen muss.

2. Fall:

x4 = 2,356

u2: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ 0,785 ; 2,356 ; 3,927 ; 5,498 }