Aufgabenbeispiele von MGK Klasse 8

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binär aus Dezimal

Beispiel:

Gib die Zahl 75 im Binärsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 75 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

75 = 64 + 11
= 64 + 8 + 3
= 64 + 8 + 2 + 1

= 1⋅64 + 0⋅32 + 0⋅16 + 1⋅8 + 0⋅4 + 1⋅2 + 1⋅1

Somit ergibt sich die Binärdarstellung von 75 = (100.1011)2

Dezimal aus Binär

Beispiel:

Gib die Zahl (100.1110)2 im Dezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(100.1110)2 = 0⋅1 + 1⋅2 + 1⋅4 + 1⋅8 + 0⋅16 + 0⋅32 + 1⋅64= 78

Somit ergibt sich die Dezimaldarstellung von (100.1110)2 = 78

ggT mit Primfaktoren

Beispiel:

Bestimme den größten gemeinsamen Teiler von 540 und 180.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

540
= 2 ⋅ 270
= 2 ⋅ 2 ⋅ 135
= 2 ⋅ 2 ⋅ 3 ⋅ 45
= 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 15
= 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5

180
= 2 ⋅ 90
= 2 ⋅ 2 ⋅ 45
= 2 ⋅ 2 ⋅ 3 ⋅ 15
= 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5

Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:

2 ⋅ 2(die 2 kommt sowohl in 540 als auch 180 insgesamt 2 mal vor)

2 ⋅ 2 ⋅ 3 ⋅ 3(die 3 kommt sowohl in 540 als auch 180 insgesamt 2 mal vor)

2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5(die 5 kommt sowohl in 540 als auch 180 insgesamt 1 mal vor)

Da 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5 = 180 in beiden Primfaktorzerlegungen vorkommt, muss 180 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.

Unser größter gemeinsamer Teiler von 540 und 180 ist somit :
ggT(540,180) = 180

kgV mit Primfaktoren

Beispiel:

Bestimme das kleinste gemeinsame Vielfache von 18 und 66.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

18
= 2 ⋅ 9
= 2 ⋅ 3 ⋅ 3

66
= 2 ⋅ 33
= 2 ⋅ 3 ⋅ 11

Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:

2(die 2 kommt in 18 insgesamt 1 mal vor)

2 ⋅ 3 ⋅ 3(die 3 kommt in 18 insgesamt 2 mal vor)

2 ⋅ 3 ⋅ 3 ⋅ 11(die 11 kommt in 66 insgesamt 1 mal vor)

In 2 ⋅ 3 ⋅ 3 ⋅ 11 = 198 sind nun alle Primteiler von 18 und alle Primteiler von 66 enthalten. Also ist 198 ein Vielfaches von 18 und 66. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 18 oder 66 fehlen.

Das kleinste gemeinsame Vielfache von 18 und 66 ist somit :
kgV(18,66) = 198

ggT mit Euklid' schem Algor.

Beispiel:

Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 305 und 60.

Lösung einblenden

Berechnung des größten gemeinsamen Teilers von 305 und 60

=>305 = 5⋅60 + 5
=>60 = 12⋅5 + 0

also gilt: ggt(305,60)=5

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (1.0010.0000)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1.0010.0000)2 = 0⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 0⋅64 + 0⋅128 + 1⋅256= 288

Somit ergibt sich die Dezimaldarstellung von (1.0010.0000)2 = 288

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1)2 = 1⋅1 = 1 = (1)16

(0010)2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 2 = (2)16

(0000)2 = 0⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = 0 = (0)16

Somit ergibt sich die Hexadezimaldarstellung von (1.0010.0000)2 = (120)16

alle Teiler einer Zahl

Beispiel:

Bestimme alle Teiler von 24 an:

Lösung einblenden

Wir suchen alle Teiler von 24. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.

Wenn eine Zahl ein Teiler von 24 ist, teilen wir 24 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 24 ergeben).

Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.

1 ist Teiler von 24, denn 24 = 1 ⋅ 24, also ist auch 24 ein Teiler.

2 ist Teiler von 24, denn 24 = 2 ⋅ 12, also ist auch 12 ein Teiler.

3 ist Teiler von 24, denn 24 = 3 ⋅ 8, also ist auch 8 ein Teiler.

4 ist Teiler von 24, denn 24 = 4 ⋅ 6, also ist auch 6 ein Teiler.

Jetzt können wir das Ausprobieren beenden, weil ja 5 kein kleinerer, sondern nur ein größerer Teiler sein könnte
- schließlich ist 5 ⋅ 5 = 25 > 24, aber die größeren Teiler haben wir ja bereits alle bei den kleineren mit erhalten.

Richtig sortiert ergibt sich also für die Teilermenge von 24:
1, 2, 3, 4, 6, 8, 12, 24

Teilbarkeitsregeln rückwärts

Beispiel:

Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 10⬜8 sowohl durch 3 als auch durch 4 teilbar ist.

Lösung einblenden

Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also ⬜8.

Da an der letzten Stelle eine 8 steht, muss an der vorletzten Stelle eine gerade Zahl (also 0, 2, 4, 6 oder 8) stehen, damit sie durch 4 teilbar ist (weil eben nur 08, 28, 48, 68, 88 durch 4 teilbar sind).

Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.

0: Dann wäre die Zahl 1008, für die Quersumme gilt dann: 1 + 0 + 0 + 8 = 9, also durch 3 teilbar.

2: Dann wäre die Zahl 1028, für die Quersumme gilt dann: 1 + 0 + 2 + 8 = 11, also nicht durch 3 teilbar.

4: Dann wäre die Zahl 1048, für die Quersumme gilt dann: 1 + 0 + 4 + 8 = 13, also nicht durch 3 teilbar.

6: Dann wäre die Zahl 1068, für die Quersumme gilt dann: 1 + 0 + 6 + 8 = 15, also durch 3 teilbar.

8: Dann wäre die Zahl 1088, für die Quersumme gilt dann: 1 + 0 + 8 + 8 = 17, also nicht durch 3 teilbar.

Die möglichen Ziffern sind also 0 und 6.

Summe von Primzahlen

Beispiel:

Schreibe 34 als Summe von zwei Primzahlen:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 34 bilden:

2 + 32 = 34, dabei ist 32 aber keine Primzahl

3 + 31 = 34, dabei ist 31 auch eine Primzahl

3 und 31 wären also zwei Primzahlen mit 3 + 31 = 34

Primfaktorzerlegung

Beispiel:

Bestimme die Primfaktorzerlegung von 132 :

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 132 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

132
= 2 ⋅ 66
= 2 ⋅ 2 ⋅ 33
= 2 ⋅ 2 ⋅ 3 ⋅ 11