Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% 37 oder mehr 6er zu erzielen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 244 | 0.24 |
| 245 | 0.2314 |
| 246 | 0.223 |
| 247 | 0.2148 |
| 248 | 0.2068 |
| 249 | 0.199 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 222 Versuchen auch ungefähr 37
(≈
Wir berechnen also mit unserem ersten n=222:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=249 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 249 sein, damit
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 16 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 16 gezogenen Kugeln nicht mehr als 6 rote sind?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.5272 | |
| 0.6457 | |
| 0.7374 | |
| 0.8061 | |
| 0.8566 | |
| 0.8935 | |
| 0.9204 | |
| ... | ... |
Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=16 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
16 sein.
Also werden noch 12 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Im einem Mathekurs beträgt die Wahrscheinlichkeit, dass ein klassischer GeSchwa-Fehler begangen wird, p=0,3. Wie viele Aufgaben kann ein Schüler höchstens machen, damit er mit einer Wahrscheinlichkeit von 70% maximal 22 dieser Fehler begeht?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 68 | 0.7148 |
| 69 | 0.6865 |
| 70 | 0.6575 |
| 71 | 0.6278 |
| 72 | 0.5977 |
| 73 | 0.5674 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der begangenen GeSchwa-Fehler an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=73:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=68 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 15% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 90%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 14 | 0.3521 |
| 15 | 0.1773 |
| 16 | 0.0791 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.
Es muss gelten:
Weil man ja aber
0.1 ≥
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=14:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=16 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 16 sein, damit
