Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 15% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 20-Platzmaschine höchstens verkaufen, so dass es zu mindestens 90% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
210.9671
220.8633
230.692
240.4951
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.

Es muss gelten: P0.85n (X20) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei 20 0.85 ≈ 24 Versuchen auch ungefähr 20 (≈0.85⋅24) Treffer auftreten.

Wir berechnen also mit unserem ersten n=24:
P0.85n (X20) ≈ 0.4951 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=21 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 5 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 60 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 80%-iger Wahrscheinlichkiet mindestens 16 mal am Tag eines ihrer eigenen 5 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥16)=1-P(X≤15)
......
5 11 0.9991
5 12 0.9946
5 13 0.98
5 14 0.9477
5 15 0.8929
5 16 0.8165
5 17 0.7242
......

Die Zufallsvariable X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.

Es muss gelten: Pp60 (X16) = 1- Pp60 (X15) = 0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 5 sein muss, da es ja genau 5 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp60 (X16) ('mindestens 16 Treffer bei 60 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 5 11 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 5 16 die gesuchte Wahrscheinlichkeit über 80% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 16 sein.

Also wären noch 11 zusätzliche Optionen (also weitere Bilder) zulässig.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,09. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 90% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.91
20.8281
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.

Es muss gelten: P0.09n (X0) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.09 ≈ 0 Versuchen auch ungefähr 0 (≈0.09⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.09n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=1 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 95% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 70% Wahrscheinlichkeit in mindestens 3 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?

Lösung einblenden
nP(X≤k)
......
670.3427
680.3328
690.3232
700.3137
710.3045
720.2955
......

Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.05 und variablem n.

Es muss gelten: P0.05n (X3) ≥ 0.7

Weil man ja aber P0.05n (X3) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.05n (X3) = 1 - P0.05n (X2) ≥ 0.7 |+ P0.05n (X2) - 0.7

0.3 ≥ P0.05n (X2) oder P0.05n (X2) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 5% der Versuche mit einem Treffer. Also müssten dann doch bei 3 0.05 ≈ 60 Versuchen auch ungefähr 3 (≈0.05⋅60) Treffer auftreten.

Wir berechnen also mit unserem ersten n=60:
P0.05n (X2) ≈ 0.4174 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=72 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 72 sein, damit P0.05n (X2) ≤ 0.3 oder eben P0.05n (X3) ≥ 0.7 gilt.