Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 11% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 90%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
n | P(X≤k) |
---|---|
... | ... |
13 | 0.427 |
14 | 0.1939 |
15 | 0.0742 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.89 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 89% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 13 Versuchen auch ungefähr 12 (≈0.89⋅13) Treffer auftreten.
Wir berechnen also mit unserem ersten n=13:
≈ 0.427
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=15 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 15 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 25 gezogenen Kugeln nicht mehr als 21 schwarze sind?
p | P(X≤21) |
---|---|
... | ... |
0.9976 | |
0.9851 | |
0.9542 | |
0.9038 | |
0.8388 | |
0.766 | |
0.6912 | |
... | ... |
Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.
Es muss gelten: = 0.75 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 8 sein.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 18% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 35-Platzmaschine höchstens verkaufen, so dass es zu mindestens 60% Wahrscheinlichkeit zu keiner Überbelegung kommt.
n | P(X≤k) |
---|---|
... | ... |
42 | 0.6512 |
43 | 0.5208 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.82 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 82% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 43 Versuchen auch ungefähr 35 (≈0.82⋅43) Treffer auftreten.
Wir berechnen also mit unserem ersten n=43:
≈ 0.5208
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,55.
Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 27 Treffer zu erzielen ?
n | P(X≤k) |
---|---|
... | ... |
49 | 0.4468 |
50 | 0.3866 |
51 | 0.3301 |
52 | 0.2783 |
53 | 0.2317 |
54 | 0.1905 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 49 Versuchen auch ungefähr 27 (≈0.55⋅49) Treffer auftreten.
Wir berechnen also mit unserem ersten n=49:
≈ 0.4468
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=54 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 54 sein, damit ≤ 0.2 oder eben ≥ 0.8 gilt.