Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Im einem Mathekurs beträgt die Wahrscheinlichkeit, dass ein klassischer GeSchwa-Fehler begangen wird, p=0,35. Wie viele Aufgaben kann ein Schüler höchstens machen, damit er mit einer Wahrscheinlichkeit von 70% maximal 40 dieser Fehler begeht?
n | P(X≤k) |
---|---|
... | ... |
108 | 0.7094 |
109 | 0.6842 |
110 | 0.6583 |
111 | 0.6319 |
112 | 0.6051 |
113 | 0.578 |
114 | 0.5507 |
... | ... |
Die Zufallsgröße X gibt Anzahl der begangenen GeSchwa-Fehler an und ist im Idealfall binomialverteilt mit p = 0.35 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 35% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 114 Versuchen auch ungefähr 40 (≈0.35⋅114) Treffer auftreten.
Wir berechnen also mit unserem ersten n=114:
≈ 0.5507
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=108 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 27 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 27 gezogenen Kugeln nicht mehr als 21 schwarze sind?
p | P(X≤21) |
---|---|
... | ... |
0.9992 | |
0.9845 | |
0.9281 | |
0.8264 | |
0.7011 | |
... | ... |
Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=27 und unbekanntem Parameter p.
Es muss gelten: = 0.8 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 27 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 80% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 5 sein.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 18% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 28-Platzmaschine höchstens verkaufen, so dass es zu mindestens 50% Wahrscheinlichkeit zu keiner Überbelegung kommt.
n | P(X≤k) |
---|---|
... | ... |
34 | 0.5911 |
35 | 0.4463 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.82 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 82% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 34 Versuchen auch ungefähr 28 (≈0.82⋅34) Treffer auftreten.
Wir berechnen also mit unserem ersten n=34:
≈ 0.5911
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=34 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Der, dessen Name nicht genannt werden darf, testet Zauber um seine Nase wiederherzustellen. Ein solcher Versuch endet zu 40% mit einer Konfettiexplosion. Wie viele Versuche muss er mindestens machen, damit er mit einer Wahrscheinlichkeit von mindestens 70% mindestens 22 Nasen hat.
n | P(X≤k) |
---|---|
... | ... |
37 | 0.4032 |
38 | 0.3304 |
39 | 0.2653 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der geglückten Nasen-Zauberversuche an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 37 Versuchen auch ungefähr 22 (≈0.6⋅37) Treffer auftreten.
Wir berechnen also mit unserem ersten n=37:
≈ 0.4032
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=39 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 39 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.