Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Fläche zwischen Wendetangente und Achsen

Beispiel:

Die Wendetangente des Graphen der Funktion f mit f(x)= x 3 -3 x 2 +2x +4 (Tangente im Wendepunkt) schließt mit den Koordinatenachsen eine Dreiecksfläche ein.
Berechne den Inhalt dieser Fläche.

Lösung einblenden

Zuerst muss natürlich mal der Wendepunkt berechnet werden:

f(x)= x 3 -3 x 2 +2x +4

Als erstes leitet man die Funktion drei mal ab.

f'(x)= 3 x 2 -6x +2 +0

= 3 x 2 -6x +2


f''(x)= 6x -6 +0

= 6x -6


f'''(x)= 6 +0

= 6

Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.

(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').

Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.

6x -6 = 0 | +6
6x = 6 |:6
x = 1

Die Lösung x= 1 ist nun der einzige Kandidat für eine Wendestelle.

Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in die dritte Ableitung.

Ist die dritte Ableitung des Punktes ungleich 0, so handelt es sich um einen Wendepunkt (hinreichende Bedingung: f''(x0)=0 und f'''(x0)≠0).

Überprüfung bei x = 1 :

f'''(1 ) = 6 +0 = 6

Da f'''(1 )≠0, haben wir bei x = 1 einen Wendepunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(1 ) = 1 3 -3 1 2 +21 +4 = 4
Man erhält so den Wendepunkt: WP(1 | 4 )

Jetzt müssen wir die Tangente im Wendepunkt anlegen:

Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:

m = f'(1)= 3 1 2 -61 +2

= 31 -6 +2

= 3 -6 +2

= -1

Damit wissen wir nun schon, dass die Tangente die Gleichung t: y= -1 x+c besitzt.

Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also f(1)= 1 3 -3 1 2 +21 +4 = 1 -31 +2 +4 = 1 -3 +2 +4 = 4

Wir erhalten so also den Punkt B(1| 4 ) als Berührpunkt.

Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:

4 = -1 1 + c

4 = -1 + c | + 1

5 = c

also c= 5

Damit erhält man als Geradengleichung für die Tangente: y= -1 ⋅x + 5

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Jetzt brauchen wir noch die Schnittpunkte der Wendetangente mit der x- und der y-Achse:

Der Schnittpunkt mit der y-Achse kennen wir bereits, das ist ja der y-Achsenabschnitt c = 5.

Der Schnittpunkt mit der x-Achse können wir berechnen, in dem wir in die Tangentengleichung y = 0 einsetzen:

-x +5 = 0 | -5
-x = -5 |:(-1 )
x = 5

Die Wendetangente schneidet somit die x-Achse in N( 5 |0).

Da die gesuchte Fläche ja ein rechtwinkliges Dreieck mit den Katheten 5 und 5 ist, gilt für den Flächeninhalt:

A = 1 2 5 ⋅ 5 = 25 2 .

Anwendungsaufgaben

Beispiel:

In einen Wassertank fließt Wasser ein und wieder aus. Das Volumen des im Tank befindlichen Wassers kann zur Zeit x mit 0 ≤ x ≤ 6 (x in Sekunden) näherungsweise durch die Funktion f mit f(x)= - 2 3 x 2 +4x +2 (in Litern) angeben werden.

  1. Wie viel Wasser ist nach 2 Sekunden im Tank?
  2. Nach wie viel Sekunden sind erstmals 16 3 Liter Wasser im Tank?
  3. Bestimme die maximale Wassermenge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei x = 2

    Hier müssen wir einfach die 2 in den Funktionsterm einsetzen:

    f(2) = - 2 3 2 2 +42 +2 = - 8 3 +8 +2 = 22 3 ≈ 7.33 .

    Nach 2 s beträgt also der Wert 7.33 Liter.

  2. x-Wert bei y = 16 3

    Wir suchen hierfür die x-Stellen, an denen der Funktionsterm den Wert 16 3 einnimmt:

    - 2 3 x 2 +4x +2 = 16 3 |⋅ 3
    3( - 2 3 x 2 +4x +2 ) = 16
    -2 x 2 +12x +6 = 16 | -16
    -2 x 2 +12x -10 = 0 |:2

    - x 2 +6x -5 = 0

    eingesetzt in die Mitternachtsformel (a-b-c-Formel):

    x1,2 = -6

  3. y-Wert des Maximums (HP)

    Gesucht ist der höchste Funktionswert, also der y-Wert des Hochpunkts.

    Detail-Rechnung für den Hochpunkt (3 | 8 ) einblenden

    Der Vollständigkeit wegen müssen wir noch die Randwerte untersuchen, an denen ja ein noch größerer Funktionswert auftreten könnte:

    f(0) = 2 und f(6) = 2 sind aber beide nicht größer als der y-Wert des Hochpunkt.

    Der einzige Hochpunkt im gegebenen Bereich liegt also bei (3 | 8 ).

    Der größte Wert beträgt somit 8 Liter.