Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
An welchem Ort befindet sich das Flugzeug nach 5s?
Das Bewegungsobjekt legt in 4s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 5 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Wie weit ist der Heißluftballon nach 11min geflogen?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 11 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wie groß ist die Geschwindigkeit des Flugzeugs in km/h?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=110
= 396
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Wann hat der Heißluftballon die Höhe von 500m erreicht?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate). Um von 20 auf 500m (also 480m) zu steigen (bzw. fallen), muss es also min = 24min lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A und fliegt mit einer Geschwindigkeit von 108km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 30.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 30. braucht er für diese Strecke
s = 3s.
Punkt B wird als nach 3s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
Welche Höhe hat das Flugzeug, wenn es 11 km zurückgelegt hat?
Das Bewegungsobjekt legt in 2 s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=110
Für die Strecke von 11 km braucht es also s
= 100s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 2000m.
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A . Nach 5min ist es im Punkt B angelangt.
Wie weit sind die beiden Flugzeuge nach 3min von einander entfernt?
F2 legt in 5min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
F1 ist nach 3min an der Stelle P1 = ; F2 an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 24.37 km.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 1h den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 9 h sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Die Partyheißluftballone sprühen einen pinken Farbstoff aus, so dass ihre Flugbahn noch einige Zeit später zu erkennen ist. Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen der Ballone. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Der Heißluftballon F2 legt in 2h den Vektor
In 1h legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass der Heißluftballon F1 nach 2h und der Heißluftballon F2 nach 1h an diesem 'x1-x2-Schnittpunkt' ist.
der Heißluftballon F1 ist also nach 2h bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
1.4 - 0.3 = 1.1 km
Zeit zu gegebener Höhe gesucht
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A
Wann hat die Rakete die Höhe von 6400m erreicht?
Das Bewegungsobjekt legt in 3s den Vektor
In 1s legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 300m (Änderung in der x3-Koordinate).
Um von 100 auf 6400m (also 6300m) zu steigen (bzw. fallen),
muss es also
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 4h den Vektor
In 1h legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 6 h sind also beide auf gleicher
Höhe: