Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
An welchem Ort befindet sich das Flugzeug nach 7s?
Das Bewegungsobjekt legt in 2s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
Wie weit ist die Rakete nach 9s geflogen?
Das Bewegungsobjekt legt in 2s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Wie groß ist die Geschwindigkeit des Flugzeugs in km/h?
Das Bewegungsobjekt legt in 1s den Vektor = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=30
= 108
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Wann hat der Heißluftballon die Höhe von 310m erreicht?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate). Um von 30 auf 310m (also 280m) zu steigen (bzw. fallen), muss es also min = 14min lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A und fliegt mit einer konstanten Geschwindigkeit von 1620km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 450.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 450. braucht er für diese Strecke
s = 6s.
Punkt B wird als nach 6s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Welche Höhe hat das Flugzeug, wenn es 6,6 km zurückgelegt hat?
Das Bewegungsobjekt legt in 1 s den Vektor = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t s befindet.
Dieser Richtungsvektor (der in 1 s zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=30
Für die Strecke von 6.6 km braucht es also s
= 220s
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 2220m.
Abstand zweier Objekte
Beispiel:
Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn). Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A . Nach 1s ist sie im Punkt B angelangt. Wie weit sind die Drohne und die Seilbahngondel nach 1s von einander entfernt?
Die Seilbahngondel legt in 1s den Vektor = zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 1s an der Stelle P1 = ; Die Seilbahngondel an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 26.93 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Wann sind die Seilbahngondel und die Drohne auf gleicher Höhe?
Die Seilbahngondel legt in 1s den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
nach 6 s sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Es gibt einen Zeitpunkt, an dem die Drohne genau über der Seilbahn ist. Berechne den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.
Die Seilbahngondel legt in 5s den Vektor
In 1s legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass die Drohne nach 8s und die Seilbahngondel nach 3s an diesem 'x1-x2-Schnittpunkt' ist.
die Drohne ist also nach 8s bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
4 - 1.8 = 2.2 m
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A
Wann hat das Flugzeug die Höhe von 140m erreicht?
Das Bewegungsobjekt legt in 1s den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate).
Um von 40 auf 140m (also 100m) zu steigen (bzw. fallen),
muss es also
Abstand zweier Objekte
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A
Wie weit sind der Heißluftballon und die Drohne nach 5min von einander entfernt?
Der Heißluftballon legt in 1min den Vektor
Die Drohne ist nach 5min an der Stelle P1
d=|
Der Abstand ist also ca. 48.03 m.
