Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3min ist er im Punkt B angelangt.
An welchem Ort befindet sich der Heißluftballon nach 6min?
Das Bewegungsobjekt legt in 3min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 6 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
Wie weit ist die Rakete nach 12s geflogen?
Das Bewegungsobjekt legt in 2s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 12 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=90
= 5.4
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 230m erreicht?
Das Bewegungsobjekt legt in 2s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate). Um von 10 auf 230m (also 220m) zu steigen (bzw. fallen), muss es also s = 22s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 32,4km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 9.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 9. braucht er für diese Strecke
s = 2s.
Punkt B wird als nach 2s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B angelangt.
Wie tief ist das Uboot, wenn es 1,62 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)
Das Bewegungsobjekt legt in 1 min den Vektor = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=27
Für die Strecke von 1.62 km braucht es also min
= 60min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -720m.
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A . Nach 2min ist es im Punkt B angelangt.
Wie weit sind die beiden Flugzeuge nach 3min von einander entfernt?
F2 legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
F1 ist nach 3min an der Stelle P1 = ; F2 an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 11.22 km.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Das Flugzeug F2 legt in 1min den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 6 min sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Die Partyheißluftballone sprühen einen pinken Farbstoff aus, so dass ihre Flugbahn noch einige Zeit später zu erkennen ist. Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen der Ballone. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Der Heißluftballon F2 legt in 2h den Vektor
In 1h legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass der Heißluftballon F1 nach 6h und der Heißluftballon F2 nach 5h an diesem 'x1-x2-Schnittpunkt' ist.
der Heißluftballon F1 ist also nach 6h bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2 - 2 = 0 km
Strecke nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A
Wie weit ist die Rakete nach 5s geflogen?
Das Bewegungsobjekt legt in 4s den Vektor
In 1s legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
Das Bewegungsobjekt hat sich dann von A
Höhe nach x Kilometern
Beispiel:
Ein Uboot startet zum Zeitpunkt t=0 im Punkt A
Wie tief ist das Uboot, wenn es 3,96 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)
Das Bewegungsobjekt legt in 4 min den Vektor
In 1min legt es also den Vektor
Die Geradengleichung
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =
Die Geschwindigkeit ist also v=33
Für die Strecke von 3.96 km braucht es also
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -2160m.