Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -3 - 3 2 - 0

= -6 2

= -3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 - x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[0;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 - 0 2 +1 = -0 - 0 +1 = 1 und
f(1) = - 1 3 - 1 2 +1 = -1 - 1 +1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(0) in den Zähler und die Differenz der x-Werte 1 - 0 in den Nenner schreiben:

f(1) - f(0) 1 - 0

= -1 - 1 1 - 0

= -2 1

= -2

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 20 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 20

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 20 |⋅ 1 3

f( 1 3 ) -0 = 20 3 |+0

f( 1 3 ) ≈ 6.667

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -2 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= 2 x 2 -2 - ( 2 2 2 -2 ) x -2

= 2 x 2 -2 -2 2 2 +2 x -2

= 2 x 2 -2 2 2 x -2

= 2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2( x +2 ) = 2( 2 +2 ) = 8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= 2 ( 2 + h ) 2 -2 - ( 2 2 2 -2 ) h

= 2 ( 2 + h ) 2 -2 -2 2 2 +2 h

= 2 ( h +2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 +4h +4 ) -8 h

= 2 h 2 +8h +8 -8 h

= 2 h 2 +8h h

= 2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= 2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 2( h +4 ) = 2(0 +4 ) = 8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = 4 x -4 1 x -1 = 4 x -4 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 4 1.1 -4 0,1 ≈ 1.95235

x = 1.01: 4 1.01 -4 0,01 ≈ 1.99502

x = 1.001: 4 1.001 -4 0,001 ≈ 1.9995

x = 1.0001: 4 1.0001 -4 0,0001 ≈ 1.99995

x = 1.00001: 4 1.00001 -4 0.00001 ≈ 2

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 4 x -4 x -1 2

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x 2 +1 - ( - u 2 +1 ) x - u

= - x 2 +1 + u 2 -1 x - u

= - x 2 + u 2 x - u

= -( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -( x + u) = -1 · ( u + u ) = -2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 5 x +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - 5 x +3 - ( - 5 u +3 ) x - u

= - 5 x +3 + 5 u -3 x - u

= - 5 x + 5 u x - u

= -5u x · u + 5x x · u x - u

= -5u +5x x · u x - u

= 5x -5u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch 5 ausklammern kann) mit dem Kehrbruich des Nenners:

= 5( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= 5 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5 x u = 5 u · u = 5 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 5 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 5 x 2 .