Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(0) in den Zähler und die Differenz der x-Werte 1 - 0 in den Nenner schreiben:

f(1) - f(0) 1 - 0

= 1 - ( - 1 ) 1 - 0

= 2 1

= 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3x -1 . Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = 1 2 -31 -1 = 1 -3 -1 = -3 und
f(4) = 4 2 -34 -1 = 16 -12 -1 = 3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= 3 - ( - 3 ) 4 - 1

= 6 3

= 2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-1 und x2=0,5 hat bei einer Funktion f den Wert 2.
Es gilt: f(-1) = -3. Bestimme f(0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(0.5) - f(-1) 0.5 - ( - 1 ) = 2

f(0.5) = -3 eingestezt (und Nenner verrechnet):

f(0.5) - ( - 3 ) 1.5 = 2 |⋅ 1.5

f(0.5) +3 = 3 |-3

f(0.5) = 0

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -2 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= - x 2 -2 - ( - 2 2 -2 ) x -2

= - x 2 -2 + 2 2 +2 x -2

= - x 2 + 2 2 x -2

= -( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -1 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -( x +2 ) = -( 2 +2 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= - ( 2 + h ) 2 -2 - ( - 2 2 -2 ) h

= - ( 2 + h ) 2 -2 + 2 2 +2 h

= - ( h +2 ) 2 +4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 +4h +4 ) +4 h

= - h 2 -4h -4 +4 h

= - h 2 -4h h

= - h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -( h +4 ) = -(0 +4 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x . Bestimme f'(16) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 16 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 16 und einem allgemeinen x auf:

f(x) - f(16) x - 16 = 2 x -2 16 x -16 = 2 x -8 x -16

Jetzt setzen wir Werte für x ein, die sich immer mehr der 16 annähern:

x = 16.1: 2 16.1 -8 0,1 ≈ 0.24961

x = 16.01: 2 16.01 -8 0,01 ≈ 0.24996

x = 16.001: 2 16.001 -8 0,001 ≈ 0.25

x = 16.0001: 2 16.0001 -8 0,0001 ≈ 0.25

x = 16.00001: 2 16.00001 -8 0.00001 ≈ 0.25

Wir können nun also eine Vermutung für den Grenzwert für x → 16 bestimmen:

f'(16) = lim x → 16 f(x) - f(16) x - 16 = lim x → 16 2 x -8 x -16 0.25

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +1 - ( -5 u 2 +1 ) x - u

= -5 x 2 +1 +5 u 2 -1 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 4 x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - 4 x -5 - ( - 4 u -5 ) x - u

= - 4 x -5 + 4 u +5 x - u

= - 4 x + 4 u x - u

= -4u x · u + 4x x · u x - u

= -4u +4x x · u x - u

= 4x -4u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch 4 ausklammern kann) mit dem Kehrbruich des Nenners:

= 4( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= 4 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 x u = 4 u · u = 4 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4 x 2 .