Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-4;-3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -4 und x2 = -3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-3) - f(-4) in den Zähler und die Differenz der x-Werte -3 - ( - 4 ) in den Nenner schreiben:

f(-3) - f(-4) -3 - ( - 4 )

= -2 - ( - 5 ) -3 - ( - 4 )

= 3 1

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 -3 x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = 1 3 -3 1 2 +1 = 1 -31 +1 = -1 und
f(3) = 3 3 -3 3 2 +1 = 27 -39 +1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= 1 - ( - 1 ) 3 - 1

= 2 2

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 15 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 15 min eben 15 60 h = 1 4 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 4 ) - f(0) 1 4 - 0 = 35

f( 1 4 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 4 ) - 0 1 4 = 35 |⋅ 1 4

f( 1 4 ) -0 = 35 4 |+0

f( 1 4 ) = 8.75

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -4 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= -2 x 2 -4 - ( -2 1 2 -4 ) x -1

= -2 x 2 -4 +2 1 2 +4 x -1

= -2 x 2 +2 1 2 x -1

= -2( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= -2 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -2( x +1 ) = -2( 1 +1 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= -2 ( 1 + h ) 2 -4 - ( -2 1 2 -4 ) h

= -2 ( 1 + h ) 2 -4 +2 1 2 +4 h

= -2 ( h +1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +2h +1 ) +2 h

= -2 h 2 -4h -2 +2 h

= -2 h 2 -4h h

= -2 h ( h +2 ) h

Jetzt können wir mit h kürzen:

= -2( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 -2( h +2 ) = -2(0 +2 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = 3 x -3 1 x -1 = 3 x -3 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 3 1.1 -3 0,1 ≈ 1.46427

x = 1.01: 3 1.01 -3 0,01 ≈ 1.49627

x = 1.001: 3 1.001 -3 0,001 ≈ 1.49963

x = 1.0001: 3 1.0001 -3 0,0001 ≈ 1.49996

x = 1.00001: 3 1.00001 -3 0.00001 ≈ 1.5

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 3 x -3 x -1 1.5

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x 2 -3 - ( -4 u 2 -3 ) x - u

= -4 x 2 -3 +4 u 2 +3 x - u

= -4 x 2 +4 u 2 x - u

= -4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4( x + u) = -4 · ( u + u ) = -8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x +3 - ( 4 u +3 ) x - u

= 4 x +3 -4 u -3 x - u

= 4 x -4 u x - u

= 4( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= 4( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 4 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 x + u = 4 u + u = 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2 x .