Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = -1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-3) in den Zähler und die Differenz der x-Werte -1 - ( - 3 ) in den Nenner schreiben:

f(-1) - f(-3) -1 - ( - 3 )

= 1 - ( - 1 ) -1 - ( - 3 )

= 2 2

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x +5 -4 . Bestimme den Differenzenquotient von f im Intervall I=[-1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = 3 -1 +5 -4 = 3 4 -4 = 2 und
f(4) = 3 4 +5 -4 = 3 9 -4 = 5
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(-1) in den Zähler und die Differenz der x-Werte 4 - ( - 1 ) in den Nenner schreiben:

f(4) - f(-1) 4 - ( - 1 )

= 5 - 2 4 - ( - 1 )

= 3 5

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=2 und x2=2,5 hat bei einer Funktion f den Wert 1.
Es gilt: f(2) = 0. Bestimme f(2,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(2.5) - f(2) 2.5 - 2 = 1

f(2.5) = 0 eingestezt (und Nenner verrechnet):

f(2.5) - 0 0.5 = 1 |⋅ 0.5

f(2.5) -0 = 0.5 |+0

f(2.5) = 0.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +1 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= 2 x 2 +1 - ( 2 2 2 +1 ) x -2

= 2 x 2 +1 -2 2 2 -1 x -2

= 2 x 2 -2 2 2 x -2

= 2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2( x +2 ) = 2( 2 +2 ) = 8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= 2 ( 2 + h ) 2 +1 - ( 2 2 2 +1 ) h

= 2 ( 2 + h ) 2 +1 -2 2 2 -1 h

= 2 ( h +2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 +4h +4 ) -8 h

= 2 h 2 +8h +8 -8 h

= 2 h 2 +8h h

= 2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= 2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 2( h +4 ) = 2(0 +4 ) = 8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 4 -4x . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = 2 x 4 -4x - ( 2 2 4 -42 ) x -2 = 2 x 4 -4x -32 +8 x -2 = 2 x 4 -4x -24 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 2 2.1 4 -42.1 -24 0,1 ≈ 64.962

x = 2.01: 2 2.01 4 -42.01 -24 0,01 ≈ 60.4816

x = 2.001: 2 2.001 4 -42.001 -24 0,001 ≈ 60.04802

x = 2.0001: 2 2.0001 4 -42.0001 -24 0,0001 ≈ 60.0048

x = 2.00001: 2 2.00001 4 -42.00001 -24 0.00001 ≈ 60.00048

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2 x 4 -4x -24 x -2 60

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 +5 - ( -2 u 2 +5 ) x - u

= -2 x 2 +5 +2 u 2 -5 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 1 x +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 1 x +1 - ( 1 u +1 ) x - u

= 1 x +1 - 1 u -1 x - u

= 1 x - 1 u x - u

= u x · u + -x x · u x - u

= u - x x · u x - u

= -x + u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch -1 ausklammern kann) mit dem Kehrbruich des Nenners:

= -( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= - 1 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u - 1 x u = -1 u · u = - 1 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 1 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 1 x 2 .