Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = 1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-2) in den Zähler und die Differenz der x-Werte 1 - ( - 2 ) in den Nenner schreiben:

f(1) - f(-2) 1 - ( - 2 )

= 2 - 1 1 - ( - 2 )

= 1 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x +1 . Bestimme den Differenzenquotient von f im Intervall I=[-1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = -1 +1 = 0 = 0 und
f(3) = 3 +1 = 4 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(-1) in den Zähler und die Differenz der x-Werte 3 - ( - 1 ) in den Nenner schreiben:

f(3) - f(-1) 3 - ( - 1 )

= 2 - 0 3 - ( - 1 )

= 2 4

= 1 2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-2 und x2=-0,5 hat bei einer Funktion f den Wert 1.
Es gilt: f(-2) = -3. Bestimme f(-0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(-0.5) - f(-2) -0.5 - ( - 2 ) = 1

f(-0.5) = -3 eingestezt (und Nenner verrechnet):

f(-0.5) - ( - 3 ) 1.5 = 1 |⋅ 1.5

f(-0.5) +3 = 1.5 |-3

f(-0.5) = -1.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 +1 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= -3 x 2 +1 - ( -3 ( -2 ) 2 +1 ) x +2

= -3 x 2 +1 +3 ( -2 ) 2 -1 x +2

= -3 x 2 +3 ( -2 ) 2 x +2

= -3( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= -3 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -3( x -2 ) = -3( -2 -2 ) = 12

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= -3 ( -2 + h ) 2 +1 - ( -3 ( -2 ) 2 +1 ) h

= -3 ( -2 + h ) 2 +1 +3 ( -2 ) 2 -1 h

= -3 ( h -2 ) 2 +12 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -3( h 2 -4h +4 ) +12 h

= -3 h 2 +12h -12 +12 h

= -3 h 2 +12h h

= 3 h ( -h +4 ) h

Jetzt können wir mit h kürzen:

= 3( -h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 3( -h +4 ) = 3( -0 +4 ) = 12

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 3 + x 2 . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = -3 x 3 + x 2 - ( -3 ( -2 ) 3 + ( -2 ) 2 ) x +2 = -3 x 3 + x 2 -24 -4 x +2 = -3 x 3 + x 2 -28 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: -3 ( -1.9 ) 3 + ( -1.9 ) 2 -28 0,1 ≈ -38.13

x = -1.99: -3 ( -1.99 ) 3 + ( -1.99 ) 2 -28 0,01 ≈ -39.8103

x = -1.999: -3 ( -1.999 ) 3 + ( -1.999 ) 2 -28 0,001 ≈ -39.981

x = -1.9999: -3 ( -1.9999 ) 3 + ( -1.9999 ) 2 -28 0,0001 ≈ -39.9981

x = -1.99999: -3 ( -1.99999 ) 3 + ( -1.99999 ) 2 -28 0.00001 ≈ -39.99981

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -3 x 3 + x 2 -28 x +2 -40

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 -1 - ( -5 u 2 -1 ) x - u

= -5 x 2 -1 +5 u 2 +1 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 +4 - ( 4 u 2 +4 ) x - u

= 4 x 2 +4 -4 u 2 -4 x - u

= 4 x 2 -4 u 2 x - u

= 4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4( x + u) = 4 · ( u + u ) = 8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x .