Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = -1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-3) in den Zähler und die Differenz der x-Werte -1 - ( - 3 ) in den Nenner schreiben:

f(-1) - f(-3) -1 - ( - 3 )

= 1 - ( - 1 ) -1 - ( - 3 )

= 2 2

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 - x +3 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 2 - 0 +3 = -0 +0 +3 = 3 und
f(2) = - 2 2 - 2 +3 = -4 -2 +3 = -3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -3 - 3 2 - 0

= -6 2

= -3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 15 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 15

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 15 |⋅ 1 3

f( 1 3 ) -0 = 5 |+0

f( 1 3 ) = 5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -5 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= -2 x 2 -5 - ( -2 ( -1 ) 2 -5 ) x +1

= -2 x 2 -5 +2 ( -1 ) 2 +5 x +1

= -2 x 2 +2 ( -1 ) 2 x +1

= -2( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -2 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -2( x -1 ) = -2( -1 -1 ) = 4

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= -2 ( -1 + h ) 2 -5 - ( -2 ( -1 ) 2 -5 ) h

= -2 ( -1 + h ) 2 -5 +2 ( -1 ) 2 +5 h

= -2 ( h -1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 -2h +1 ) +2 h

= -2 h 2 +4h -2 +2 h

= -2 h 2 +4h h

= 2 h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= 2( -h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 2( -h +2 ) = 2( -0 +2 ) = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x . Bestimme f'(16) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 16 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 16 und einem allgemeinen x auf:

f(x) - f(16) x - 16 = 3 x -3 16 x -16 = 3 x -12 x -16

Jetzt setzen wir Werte für x ein, die sich immer mehr der 16 annähern:

x = 16.1: 3 16.1 -12 0,1 ≈ 0.37442

x = 16.01: 3 16.01 -12 0,01 ≈ 0.37494

x = 16.001: 3 16.001 -12 0,001 ≈ 0.37499

x = 16.0001: 3 16.0001 -12 0,0001 ≈ 0.375

x = 16.00001: 3 16.00001 -12 0.00001 ≈ 0.375

Wir können nun also eine Vermutung für den Grenzwert für x → 16 bestimmen:

f'(16) = lim x → 16 f(x) - f(16) x - 16 = lim x → 16 3 x -12 x -16 0.375

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 +2 - ( 3 u 2 +2 ) x - u

= 3 x 2 +2 -3 u 2 -2 x - u

= 3 x 2 -3 u 2 x - u

= 3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3( x + u) = 3 · ( u + u ) = 6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 1 x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - 1 x -5 - ( - 1 u -5 ) x - u

= - 1 x -5 + 1 u +5 x - u

= - 1 x + 1 u x - u

= -u x · u + x x · u x - u

= -u + x x · u x - u

= x - u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler mit dem Kehrbruich des Nenners:

= x - u x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= 1 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 x u = 1 u · u = 1 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = 1 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 1 x 2 .