Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-4;-3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -4 und x2 = -3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-3) - f(-4) in den Zähler und die Differenz der x-Werte -3 - ( - 4 ) in den Nenner schreiben:

f(-3) - f(-4) -3 - ( - 4 )

= 1 - 0 -3 - ( - 4 )

= 1 1

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x +3 . Bestimme den Differenzenquotient von f im Intervall I=[-3;-2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = -2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = -3 +3 = 0 = 0 und
f(-2) = -2 +3 = 1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-2) - f(-3) in den Zähler und die Differenz der x-Werte -2 - ( - 3 ) in den Nenner schreiben:

f(-2) - f(-3) -2 - ( - 3 )

= 1 - 0 -2 - ( - 3 )

= 1 1

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 30

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 30 |⋅ 1 3

f( 1 3 ) -0 = 10 |+0

f( 1 3 ) = 10

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -2 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= -3 x 2 -2 - ( -3 ( -1 ) 2 -2 ) x +1

= -3 x 2 -2 +3 ( -1 ) 2 +2 x +1

= -3 x 2 +3 ( -1 ) 2 x +1

= -3( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -3 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -3( x -1 ) = -3( -1 -1 ) = 6

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= -3 ( -1 + h ) 2 -2 - ( -3 ( -1 ) 2 -2 ) h

= -3 ( -1 + h ) 2 -2 +3 ( -1 ) 2 +2 h

= -3 ( h -1 ) 2 +3 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -3( h 2 -2h +1 ) +3 h

= -3 h 2 +6h -3 +3 h

= -3 h 2 +6h h

= 3 h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= 3( -h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 3( -h +2 ) = 3( -0 +2 ) = 6

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 +4 x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = -2 x 3 +4 x 2 - ( -2 2 3 +4 2 2 ) x -2 = -2 x 3 +4 x 2 +16 -16 x -2 = -2 x 3 +4 x 2 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: -2 2.1 3 +4 2.1 2 0,1 ≈ -8.82

x = 2.01: -2 2.01 3 +4 2.01 2 0,01 ≈ -8.0802

x = 2.001: -2 2.001 3 +4 2.001 2 0,001 ≈ -8.008

x = 2.0001: -2 2.0001 3 +4 2.0001 2 0,0001 ≈ -8.0008

x = 2.00001: -2 2.00001 3 +4 2.00001 2 0.00001 ≈ -8.00008

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -2 x 3 +4 x 2 x -2 -8

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 -2 - ( 2 u 2 -2 ) x - u

= 2 x 2 -2 -2 u 2 +2 x - u

= 2 x 2 -2 u 2 x - u

= 2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2( x + u) = 2 · ( u + u ) = 4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x -5 - ( 4 u -5 ) x - u

= 4 x -5 -4 u +5 x - u

= 4 x -4 u x - u

= 4( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= 4( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 4 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 x + u = 4 u + u = 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2 x .