Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-3;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -3 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-3) in den Zähler und die Differenz der x-Werte 0 - ( - 3 ) in den Nenner schreiben:

f(0) - f(-3) 0 - ( - 3 )

= 2 - ( - 1 ) 0 - ( - 3 )

= 3 3

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x -4 . Bestimme den Differenzenquotient von f im Intervall I=[1;4].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 1 und x2 = 4 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(1) = 2 1 -4 = 21 -4 = -2 und
f(4) = 2 4 -4 = 22 -4 = 0
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(4) - f(1) in den Zähler und die Differenz der x-Werte 4 - 1 in den Nenner schreiben:

f(4) - f(1) 4 - 1

= 0 - ( - 2 ) 4 - 1

= 2 3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 30

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 30 |⋅ 1 5

f( 1 5 ) -0 = 6 |+0

f( 1 5 ) = 6

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= x 2 -4 - ( ( -1 ) 2 -4 ) x +1

= x 2 -4 - ( -1 ) 2 +4 x +1

= x 2 - ( -1 ) 2 x +1

= x 2 - ( -1 ) 2 x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= 1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 x -1 = -1 -1 = -2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= ( -1 + h ) 2 -4 - ( ( -1 ) 2 -4 ) h

= ( -1 + h ) 2 -4 - ( -1 ) 2 +4 h

= ( h -1 ) 2 -1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 -2h +1 -1 h

= h 2 -2h h

= h ( h -2 ) h

Jetzt können wir mit h kürzen:

= h -2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 h -2 = 0 -2 = -2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 3 -3 x 2 . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = 3 x 3 -3 x 2 - ( 3 1 3 -3 1 2 ) x -1 = 3 x 3 -3 x 2 -3 +3 x -1 = 3 x 3 -3 x 2 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 3 1.1 3 -3 1.1 2 0,1 ≈ 3.63

x = 1.01: 3 1.01 3 -3 1.01 2 0,01 ≈ 3.0603

x = 1.001: 3 1.001 3 -3 1.001 2 0,001 ≈ 3.006

x = 1.0001: 3 1.0001 3 -3 1.0001 2 0,0001 ≈ 3.0006

x = 1.00001: 3 1.00001 3 -3 1.00001 2 0.00001 ≈ 3.00006

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 3 x 2 · 1 1 3

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 -1 - ( 3 u 2 -1 ) x - u

= 3 x 2 -1 -3 u 2 +1 x - u

= 3 x 2 -3 u 2 x - u

= 3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3( x + u) = 3 · ( u + u ) = 6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x -5 - ( 5 u -5 ) x - u

= 5 x -5 -5 u +5 x - u

= 5 x -5 u x - u

= 5( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= 5( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 5 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5 x + u = 5 u + u = 5 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 5 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 5 2 x .