Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein idealer Würfel wird 20 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 5 mal eine 6 geworfen wird.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 5) = ( a b ) ( d 6 )c ( 1 6 )e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 5 mal getroffen und 15 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=20 und b=5 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 20 5 ) Pfade an. Da ja in jedem Pfad 5 Treffer und 15 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
( 1 6 )5( 5 6 )15 oder eben (einfach vertauscht) ( 5 6 )15( 1 6 )5

Somit muss d = 5, sowie c = 15 und e = 5 sein.

Bernoulli-Formel vervollständigen

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 20 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.

Für welches der aufgeführten Ereignisse könnte der Term P = 0.320 + ( 20 a ) 0.71 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)
Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)

Beim ersten Summand 0.320 steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=20 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 20 Nicht-Treffer an, also P(X=0) bzw. P(Y=20).

Beim zweiten längeren Term erkennt man die Potenz 0.71, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=19).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Y: keine Treffer:
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥19)

Somit ist die gesuchte Option: Weniger als 2 mal wird eine blaue Kugel gezogen.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 19 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 19 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 20 1 ) , also ist a = 1 (hier ist auch a=19 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,2. Es wird 50 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:
Von den ersten 20 Versuchen landen genau 4 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 5 mal auf grün gedreht.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 20 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=20 und p=0.2.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.220 (X=4) ≈ 0.2182.

Analog betrachten wir nun die restlichen 30 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=30 und p=0.2.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.230 (Y5) = 1- P0.230 (Y4) ≈ 0.7448.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.220 (X=4) P0.230 (Y5) = 0.2182 ⋅ 0.7448 ≈ 0.1625

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 95% und im Stehen 89%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.

P0.955 (X=4) = ( 5 4 ) 0.954 0.051 ≈ 0.2036
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.

P0.895 (X=5) = ( 5 5 ) 0.895 0.110 ≈ 0.5584
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2036 ⋅ 0.5584 = 0.11369024

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.

P0.955 (X=5) = ( 5 5 ) 0.955 0.050 ≈ 0.7738
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.

P0.895 (X=4) = ( 5 4 ) 0.894 0.111 ≈ 0.3451
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7738 ⋅ 0.3451 = 0.26703838

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.

P0.955 (X=5) = ( 5 5 ) 0.955 0.050 ≈ 0.7738
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.

P0.895 (X=5) = ( 5 5 ) 0.895 0.110 ≈ 0.5584
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7738 ⋅ 0.5584 = 0.43208992


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1137 + 0.267 + 0.4321 = 0.8128

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 80% wirft 9 mal auf den Korb.
Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 3 ) 0.8 3 0.2 6

Dabei gibt ja 0.8 3 0.2 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 6 Nicht-Treffern und ( 9 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOO

OXXXOOOOO

OOXXXOOOO

OOOXXXOOO

OOOOXXXOO

OOOOOXXXO

OOOOOOXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ 0.8 3 0.2 6 ≈ 0.0002

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 10% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.1.

Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.1, also P0.150 (X4)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.1.

P0.150 (X4) = P0.150 (X=0) + P0.150 (X=1) + P0.150 (X=2) +... + P0.150 (X=4) = 0.43119840682906 ≈ 0.4312
(TI-Befehl: binomcdf(50,0.1,4))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.4312) und 'nicht ok'(p=0.5688).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0.18593344
kiste ok -> nicht ok0.24526656
nicht ok -> kiste ok0.24526656
nicht ok -> nicht ok0.32353344

Einzel-Wahrscheinlichkeiten: kiste ok: 0.4312; nicht ok: 0.5688;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'kiste ok'-'kiste ok' (P=0.18593344)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.18593344 = 0.18593344