Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,3. Gesucht ist die Wahrscheinlichkeit bei 100 Versuchen genau 11 mal im grünen Bereich zu landen.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 11) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 100 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 11 mal getroffen und 89 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=100 und b=11 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 11 Treffer und
89 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅ oder eben (einfach vertauscht) ⋅
Somit muss d = 0.7, sowie c = 89 und e = 11 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 30%. Es wird 10 mal gedreht.
Für welches der aufgeführten Ereignisse könnte der Term P = + die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird in den grünen Bereich gedreht)Y : Anzahl der Nicht-Treffer (also es wird nicht in den grünen Bereich gedreht)
Beim ersten Summand steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=10 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 10 Treffer bzw. 0 Nicht-Treffer an, also P(X=10) bzw. P(Y=0).
Beim zweiten längeren Term erkennt man die Potenz , bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 9 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 9 Treffer sein, also P(X=9) bzw. P(Y=1).
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=10)+P(X=9)=P(X≥9) bzw. P(Y≤1)
Somit ist die gesuchte Option: Mehr als 8 mal wird in den grünen Bereich gedreht.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.7.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 9 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 9 (hier ist auch a=1 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein normaler Würfel wird 26 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 6 Versuchen höchstens 0 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 5 Sechser gewürfelt werden?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 6
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=6 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.3349.
Analog betrachten wir nun die restlichen 20 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=20 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als = 1- ≈ 0.2313.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.3349 ⋅ 0.2313 ≈ 0.0775
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 60 und am Samstag bei 35 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 24 und 36 am Samstag so zwischen 19 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 74% höher als am Freitag mit 52%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und p=0.52.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 36 Treffer bei 60 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.52 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9151 - 0.0231 ≈ 0.892 berechnen.
TI-Befehl: binompdf(60,0.52,36)- binompdf(60,0.52,23)
Samstag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=35 und p=0.74.
Gesucht ist die Wahrscheinlichkeit zwischen 19 und 32 Treffer bei 35 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.74 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9977 - 0.0034 ≈ 0.9943 berechnen.
TI-Befehl: binompdf(35,0.74,32)- binompdf(35,0.74,18)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.892 ⋅ 0.9943 ≈ 0.8869
feste Reihenfolge im Binomialkontext
Beispiel:
10 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 10 Versuchen mit der Formel von Bernoulli
berechnen:
⋅
⋅
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXOOOOOO
OXXXXOOOOO
OOXXXXOOOO
OOOXXXXOOO
OOOOXXXXOO
OOOOOXXXXO
OOOOOOXXXX
Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 87% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.87.
Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.87,
also
Dies berechnet man über die Gegenwahrscheinlichkeit:
≈ 1 - 0.492 ≈ 0.508 (TI-Befehl: 1-binompdf(20,0.87,17))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.508) und 'zu wenig'(p=0.492).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
| Ereignis | P |
|---|---|
| genügend Treffer -> genügend Treffer | |
| genügend Treffer -> zu wenig | |
| zu wenig -> genügend Treffer | |
| zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer:
'genügend Treffer'-'zu wenig' (P=
'zu wenig'-'genügend Treffer' (P=
'genügend Treffer'-'genügend Treffer' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
