Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,7. Gesucht ist die Wahrscheinlichkeit bei 100 Versuchen genau 30 mal im grünen Bereich zu landen.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 30) = ( a b ) 0.7c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 100 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 30 mal getroffen und 70 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=100 und b=30 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 100 30 ) Pfade an. Da ja in jedem Pfad 30 Treffer und 70 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.7300.370

Somit muss d = 0.3, sowie c = 30 und e = 70 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 20%. Es wird 20 mal gedreht.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 20 a ) 0.219 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.

In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird in den grünen Bereich gedreht" erkennen, also muss die Hochzahl 19 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 19 mal wird in den grünen Bereich gedreht oder eben gleich bedeutend: Genau 1 mal wird nicht in den grünen Bereich gedreht.

Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.8.

Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 19 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 20 19 ) , also ist a = 19 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 65% und wirft 16 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 10 Versuchen genau 6 mal und von den restlichen Versuchen höchstens 5 mal trifft.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=10 und p=0.65.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.6510 (X=6) ≈ 0.2377.

Analog betrachten wir nun die restlichen 6 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=6 und p=0.65.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.656 (Y5) ≈ 0.9246.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.6510 (X=6) P0.656 (Y5) = 0.2377 ⋅ 0.9246 ≈ 0.2198

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:

  • 0 mal unten und 2 mal oben
  • 1 mal unten und 1 mal oben
  • 2 mal unten und 0 mal oben

0 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=0) = ( 3 0 ) 0.60 0.43 ≈ 0.064
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.064 ⋅ 0.288 = 0.018432

1 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=1) = ( 3 1 ) 0.61 0.42 ≈ 0.288
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.432 = 0.124416

2 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=2) = ( 3 2 ) 0.62 0.41 ≈ 0.432
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=0) = ( 3 0 ) 0.40 0.63 ≈ 0.216
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.432 ⋅ 0.216 = 0.093312


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0184 + 0.1244 + 0.0933 = 0.2362

feste Reihenfolge im Binomialkontext

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 95%. Es wird 8 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 3 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 8 Versuchen mit der Formel von Bernoulli berechnen: ( 8 3 ) 0.95 3 0.05 5

Dabei gibt ja 0.95 3 0.05 5 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 5 Nicht-Treffern und ( 8 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 8 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOO

OXXXOOOO

OOXXXOOO

OOOXXXOO

OOOOXXXO

OOOOOXXX

Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅ 0.95 3 0.05 5 ≈ 0

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 12% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 106 Tickets für ihr Flugzeug mit 99 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.88.

Gesucht ist die Wahrscheinlichkeit für höchstens 99 Treffer bei 106 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.88, also P0.88106 (X99)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.88.

P0.88106 (X99) = P0.88106 (X=0) + P0.88106 (X=1) + P0.88106 (X=2) +... + P0.88106 (X=99) = 0.97643947348608 ≈ 0.9764
(TI-Befehl: binomcdf(106,0.88,99))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9764) und 'überbucht'(p=0.0236).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0.930857735744
nicht überbucht -> nicht überbucht -> überbucht0.022499224256
nicht überbucht -> überbucht -> nicht überbucht0.022499224256
nicht überbucht -> überbucht -> überbucht0.000543815744
überbucht -> nicht überbucht -> nicht überbucht0.022499224256
überbucht -> nicht überbucht -> überbucht0.000543815744
überbucht -> überbucht -> nicht überbucht0.000543815744
überbucht -> überbucht -> überbucht1.3144256E-5

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0.9764; überbucht: 0.0236;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0.930857735744)
'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0.022499224256)
'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0.022499224256)
'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0.022499224256)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.930857735744 + 0.022499224256 + 0.022499224256 + 0.022499224256 = 0.998355408512