Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein idealer Würfel wird 25 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 12 mal eine 6 geworfen wird.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 12) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 25 Ebenen lösen.
Der Binomialkoeffizient
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Somit muss d = 5, sowie c = 12 und e = 13 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 20%. Es wird 15 mal gedreht.
Für welches der aufgeführten Ereignisse könnte der Term P =
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird in den grünen Bereich gedreht)Y : Anzahl der Nicht-Treffer (also es wird nicht in den grünen Bereich gedreht)
Beim ersten Summand
Beim zweiten längeren Term erkennt man die Potenz
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=15)+P(X=14)=P(X≥14) bzw. P(Y≤1)
Somit ist die gesuchte Option: Mindestens 14 mal wird in den grünen Bereich gedreht oder eben gleich bedeutend: Weniger als 2 mal wird nicht in den grünen Bereich gedreht.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.8.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 15 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 3 richtig errät?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 11 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=11 und p=0.25.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 55 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 36 am Samstag so zwischen 20 und 26 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 67% höher als am Freitag mit 51%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=55 und p=0.51.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 36 Treffer bei 55 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.51 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binompdf(55,0.51,36)- binompdf(55,0.51,29)
Samstag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.67.
Gesucht ist die Wahrscheinlichkeit zwischen 20 und 26 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.67 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binompdf(50,0.67,26)- binompdf(50,0.67,19)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.3375 ⋅ 0.0196 ≈ 0.0066
feste Reihenfolge im Binomialkontext
Beispiel:
8 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 5 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 8 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXXOOO
OXXXXXOO
OOXXXXXO
OOOXXXXX
Es gibt also genau 4 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 4 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 10% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 104 Tickets für ihr Flugzeug mit 94 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.9.
Gesucht ist die Wahrscheinlichkeit für höchstens 94 Treffer bei 104 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.9, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.9.
(TI-Befehl: binomcdf(104,0.9,94))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.5999) und 'überbucht'(p=0.4001).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht:
'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=
'nicht überbucht'-'nicht überbucht'-'überbucht' (P=
'nicht überbucht'-'überbucht'-'nicht überbucht' (P=
'überbucht'-'nicht überbucht'-'nicht überbucht' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
