Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 45% wirft 60 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 55 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 55) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 60 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 55 mal getroffen und 5 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=60 und b=55 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 55 Treffer und
5 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅ oder eben (einfach vertauscht) ⋅
Somit muss d = 0.55, sowie c = 5 und e = 55 sein.
Bernoulli-Formel vervollständigen
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 10 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.
Für welches der aufgeführten Ereignisse könnte der Term P = + die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)
Beim ersten Summand steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=10 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 10 Treffer bzw. 0 Nicht-Treffer an, also P(X=10) bzw. P(Y=0).
Beim zweiten längeren Term erkennt man die Potenz , bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 9 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 9 Treffer sein, also P(X=9) bzw. P(Y=1).
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=10)+P(X=9)=P(X≥9) bzw. P(Y≤1)
Somit ist die gesuchte Option: Mindestens 9 mal wird eine blaue Kugel gezogen oder eben gleich bedeutend: Weniger als 2 mal wird eine rote Kugel gezogen.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 9 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 9 (hier ist auch a=1 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein normaler Würfel wird 21 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 11 Versuchen höchstens 3 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 1 Sechser gewürfelt werden?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 11
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=11 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.9044.
Analog betrachten wir nun die restlichen 10 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=10 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als = 1- ≈ 0.8385.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.9044 ⋅ 0.8385 ≈ 0.7583
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 40% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:
- 1 mal unten und 3 mal oben
- 2 mal unten und 2 mal oben
- 3 mal unten und 1 mal oben
1 mal unten und 3 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.432Die Wahrscheinlichkeit für 3 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.064Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.432 ⋅ 0.064 = 0.027648
2 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.288Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.288Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.288 = 0.082944
3 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 3 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.064Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.432Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.064 ⋅ 0.432 = 0.027648
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.0276 + 0.0829 + 0.0276 = 0.1382
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 15%. Es wird 8 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 5 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 8 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 3 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXXOOO
OXXXXXOO
OOXXXXXO
OOOXXXXX
Es gibt also genau 4 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 4 ⋅ ⋅ ≈ 0.0002
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 5% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.05.
Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.05, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.05.
= + + +... + = 0.99283505209741 ≈ 0.9928(TI-Befehl: binomcdf(25,0.05,4))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.9928) und 'nicht ok'(p=0.0072).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
Ereignis | P |
---|---|
kiste ok -> kiste ok | |
kiste ok -> nicht ok | |
nicht ok -> kiste ok | |
nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok: ; nicht ok: ;
Die relevanten Pfade sind:
'kiste ok'-'kiste ok' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=