Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 70% wirft 20 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 9 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 9) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 9 mal getroffen und 11 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=20 und b=9 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 9 Treffer und
11 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅ oder eben (einfach vertauscht) ⋅
Somit muss d = 0.3, sowie c = 11 und e = 9 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein idealer Würfel wird 5 mal geworfen.
Für welches der aufgeführten Ereignisse könnte der Term P = 1 - -
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)
Beim Summand
Beim hinteren längeren Term erkennt man die Potenz
Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 0 und 1 Treffer möglich sind, also 2, 3, ..., kurz P(X≥2) bzw. P(Y≤3).
Somit ist die gesuchte Option: Mindestens 2 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Höchstens 3 mal wird keine 6 gewürfelt.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 5 Versuchen die Anzahl der "Nicht-Treffer" mit c = 4 bestimmen.
Die Anzahl der richtigen Pfade (mit 1 Treffer und 4 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 20 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 5 richtig errät?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 16 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=16 und p=0.25.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 60 und am Samstag bei 35 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 36 am Samstag so zwischen 25 und 28 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 69% höher als am Freitag mit 52%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und p=0.52.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 36 Treffer bei 60 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.52 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binompdf(60,0.52,36)- binompdf(60,0.52,29)
Samstag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=35 und p=0.69.
Gesucht ist die Wahrscheinlichkeit zwischen 25 und 28 Treffer bei 35 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.69 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binompdf(35,0.69,28)- binompdf(35,0.69,24)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.5852 ⋅ 0.4077 ≈ 0.2386
feste Reihenfolge im Binomialkontext
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 6 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 6 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXOOO
OXXXOO
OOXXXO
OOOXXX
Es gibt also genau 4 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 4 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 7% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.07.
Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.07, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.07.
(TI-Befehl: binomcdf(25,0.07,2))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.7466) und 'nicht ok'(p=0.2534).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
| Ereignis | P |
|---|---|
| kiste ok -> kiste ok | |
| kiste ok -> nicht ok | |
| nicht ok -> kiste ok | |
| nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok:
'kiste ok'-'kiste ok' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
