Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein idealer Würfel wird 15 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 14 mal eine 6 geworfen wird.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 14) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 15 Ebenen lösen.
Der Binomialkoeffizient
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Somit muss d = 5, sowie c = 14 und e = 1 sein.
Bernoulli-Formel vervollständigen
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 15 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.
Für welches der aufgeführten Ereignisse könnte der Term P =
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)
Beim ersten Summand
Beim zweiten längeren Term erkennt man die Potenz
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥14)
Somit ist die gesuchte Option: Weniger als 2 mal wird eine blaue Kugel gezogen.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 14 bestimmen.
Die Anzahl der richtigen Pfade (mit 1 Treffer und 14 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 20 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 2 richtig errät?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 16 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=16 und p=0.25.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 40% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 3 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 3 kommen kann:
- 0 mal unten und 3 mal oben
- 1 mal unten und 2 mal oben
- 2 mal unten und 1 mal oben
- 3 mal unten und 0 mal oben
0 mal unten und 3 mal oben
Die Wahrscheinlichkeit für 0 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Die Wahrscheinlichkeit für 3 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.216 ⋅ 0.064 = 0.013824
1 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.432 ⋅ 0.288 = 0.124416
2 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.288 ⋅ 0.432 = 0.124416
3 mal unten und 0 mal oben
Die Wahrscheinlichkeit für 3 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Die Wahrscheinlichkeit für 0 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p4=0.064 ⋅ 0.216 = 0.013824
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 4 Kombinationen addiert:
0.0138 + 0.1244 + 0.1244 + 0.0138 = 0.2765
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 60%. Es wird 8 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 8 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXOOOO
OXXXXOOO
OOXXXXOO
OOOXXXXO
OOOOXXXX
Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 8% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.08.
Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.08, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.08.
(TI-Befehl: binomcdf(25,0.08,4))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.9549) und 'nicht ok'(p=0.0451).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
| Ereignis | P |
|---|---|
| kiste ok -> kiste ok | |
| kiste ok -> nicht ok | |
| nicht ok -> kiste ok | |
| nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok:
'kiste ok'-'kiste ok' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
