Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein idealer Würfel wird 25 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 7 mal eine 6 geworfen wird.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 7) = ( a b ) ( 1 6 )c ( d 6 )e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 25 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 7 mal getroffen und 18 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=25 und b=7 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 25 7 ) Pfade an. Da ja in jedem Pfad 7 Treffer und 18 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
( 1 6 )7( 5 6 )18

Somit muss d = 5, sowie c = 7 und e = 18 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 15 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 15 a ) ( 1 6 )1 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.

In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird eine 6 gewürfelt" erkennen, also muss die Hochzahl 1 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 1 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Genau 14 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 14 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 14 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 15 1 ) , also ist a = 1 (hier ist auch a=14 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 20% und wirft 17 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 5 Versuchen genau 1 mal und von den restlichen Versuchen höchstens 2 mal trifft.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 5 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=5 und p=0.2.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.25 (X=1) ≈ 0.4096.

Analog betrachten wir nun die restlichen 12 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=12 und p=0.2.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.212 (Y2) ≈ 0.5583.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.25 (X=1) P0.212 (Y2) = 0.4096 ⋅ 0.5583 ≈ 0.2287

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 70% und oben 30%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:

  • 0 mal unten und 2 mal oben
  • 1 mal unten und 1 mal oben
  • 2 mal unten und 0 mal oben

0 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.7.

P0.73 (X=0) = ( 3 0 ) 0.70 0.33 ≈ 0.027
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=2) = ( 3 2 ) 0.32 0.71 ≈ 0.189
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.027 ⋅ 0.189 = 0.005103

1 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.7.

P0.73 (X=1) = ( 3 1 ) 0.71 0.32 ≈ 0.189
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=1) = ( 3 1 ) 0.31 0.72 ≈ 0.441
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.189 ⋅ 0.441 = 0.083349

2 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.7.

P0.73 (X=2) = ( 3 2 ) 0.72 0.31 ≈ 0.441
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=0) = ( 3 0 ) 0.30 0.73 ≈ 0.343
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.441 ⋅ 0.343 = 0.151263


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0051 + 0.0833 + 0.1513 = 0.2397

feste Reihenfolge im Binomialkontext

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 35%. Es wird 9 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 3 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 3 ) 0.35 3 0.65 6

Dabei gibt ja 0.35 3 0.65 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 6 Nicht-Treffern und ( 9 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOO

OXXXOOOOO

OOXXXOOOO

OOOXXXOOO

OOOOXXXOO

OOOOOXXXO

OOOOOOXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ 0.35 3 0.65 6 ≈ 0.0226

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 18% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 108 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=108 und p=0.82.

Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 108 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.82, also P0.82108 (X93)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=108 und p=0.82.

P0.82108 (X93) = P0.82108 (X=0) + P0.82108 (X=1) + P0.82108 (X=2) +... + P0.82108 (X=93) = 0.89522166067279 ≈ 0.8952
(TI-Befehl: binomcdf(108,0.82,93))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.8952) und 'überbucht'(p=0.1048).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0.717398097408
nicht überbucht -> nicht überbucht -> überbucht0.083984942592
nicht überbucht -> überbucht -> nicht überbucht0.083984942592
nicht überbucht -> überbucht -> überbucht0.009832017408
überbucht -> nicht überbucht -> nicht überbucht0.083984942592
überbucht -> nicht überbucht -> überbucht0.009832017408
überbucht -> überbucht -> nicht überbucht0.009832017408
überbucht -> überbucht -> überbucht0.001151022592

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0.8952; überbucht: 0.1048;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0.717398097408)
'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0.083984942592)
'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0.083984942592)
'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0.083984942592)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.717398097408 + 0.083984942592 + 0.083984942592 + 0.083984942592 = 0.969352925184