Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 90% wirft 40 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 21 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 21) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 21 mal getroffen und 19 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=21 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 21 Treffer und
19 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.1, sowie c = 21 und e = 19 sein.
Bernoulli-Formel vervollständigen
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 10 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.
Für welches der aufgeführten Ereignisse könnte der Term P = 1 - - die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)
Beim ersten Summand nach dem "1-", also bei steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=10 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 10 Treffer bzw. 0 Nicht-Treffer an, also P(X=10) bzw. P(Y=0).
Beim zweiten längeren Term erkennt man die Potenz , bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 9 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 9 Treffer sein, also P(X=9) bzw. P(Y=1).
Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 10 und 9 Treffer möglich sind, also 8, 7, ..., kurz P(X≤8) bzw. P(Y≥2).
Somit ist die gesuchte Option: Weniger als 9 mal wird eine blaue Kugel gezogen.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 9 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 9 (hier ist auch a=1 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 23 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 11 Mädchen genau 1 einen Glückskeks mit einer Peperoni und von den Jungs genau 2 einen Glückskeks mit einer Peperoni erwischen .
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 11
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=11 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.3617.
Analog betrachten wir nun die restlichen 12 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=12 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.2713.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.3617 ⋅ 0.2713 ≈ 0.0981
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 55 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 24 und 37 am Samstag so zwischen 21 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 75% höher als am Freitag mit 44%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=55 und p=0.44.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 37 Treffer bei 55 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.44 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9998 - 0.4268 ≈ 0.573 berechnen.
TI-Befehl: binompdf(55,0.44,37)- binompdf(55,0.44,23)
Samstag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.75.
Gesucht ist die Wahrscheinlichkeit zwischen 21 und 32 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.75 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.0551 - 0 ≈ 0.0551 berechnen.
TI-Befehl: binompdf(50,0.75,32)- binompdf(50,0.75,20)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.573 ⋅ 0.0551 ≈ 0.0316
feste Reihenfolge im Binomialkontext
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 7 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 4 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXOOOO
OXXXOOO
OOXXXOO
OOOXXXO
OOOOXXX
Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 5 ⋅ ⋅ ≈ 0.0139
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 15 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 92% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.92.
Gesucht ist die Wahrscheinlichkeit für mindestens 15 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.92,
also
.
Dies berechnet man über die Gegenwahrscheinlichkeit: = 1 -
≈ 1 - 0.0038 ≈ 0.9962 (TI-Befehl: 1-binompdf(20,0.92,14))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.9962) und 'zu wenig'(p=0.0038).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
| Ereignis | P |
|---|---|
| genügend Treffer -> genügend Treffer | |
| genügend Treffer -> zu wenig | |
| zu wenig -> genügend Treffer | |
| zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer: ; zu wenig: ;
Die relevanten Pfade sind:
'genügend Treffer'-'zu wenig' (P=)
'zu wenig'-'genügend Treffer' (P=)
'genügend Treffer'-'genügend Treffer' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
