Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,9. Gesucht ist die Wahrscheinlichkeit bei 40 Versuchen genau 29 mal im grünen Bereich zu landen.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 29) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 29 mal getroffen und 11 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=29 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 29 Treffer und
11 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.1, sowie c = 29 und e = 11 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein Basketballspieler mit einer Trefferquote von p=0,7 wirft 15 mal auf den Korb.
Für welches der aufgeführten Ereignisse könnte der Term P = + die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es trifft er in den Korb)Y : Anzahl der Nicht-Treffer (also es trifft er nicht in den Korb)
Beim ersten Summand steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=15 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 15 Treffer bzw. 0 Nicht-Treffer an, also P(X=15) bzw. P(Y=0).
Beim zweiten längeren Term erkennt man die Potenz , bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 14 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 14 Treffer sein, also P(X=14) bzw. P(Y=1).
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=15)+P(X=14)=P(X≥14) bzw. P(Y≤1)
Somit ist die gesuchte Option: Mehr als 13 mal trifft er in den Korb.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 14 (hier ist auch a=1 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein normaler Würfel wird 25 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 6 Versuchen höchstens 1 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 2 Sechser gewürfelt werden?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 6
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=6 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.7368.
Analog betrachten wir nun die restlichen 19 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=19 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als = 1- ≈ 0.8498.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.7368 ⋅ 0.8498 ≈ 0.6261
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:
- 0 mal unten und 2 mal oben
- 1 mal unten und 1 mal oben
- 2 mal unten und 0 mal oben
0 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 0 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.064Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.288Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.064 ⋅ 0.288 = 0.018432
1 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.288Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.432Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.432 = 0.124416
2 mal unten und 0 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.432Die Wahrscheinlichkeit für 0 mal oben ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.216Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.432 ⋅ 0.216 = 0.093312
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.0184 + 0.1244 + 0.0933 = 0.2362
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 50%. Es wird 9 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 5 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXOOOOO
OXXXXOOOO
OOXXXXOOO
OOOXXXXOO
OOOOXXXXO
OOOOOXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 6 ⋅ ⋅ ≈ 0.0117
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 17% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 104 Tickets für ihr Flugzeug mit 95 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.83.
Gesucht ist die Wahrscheinlichkeit für höchstens 95 Treffer bei 104 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.83, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.83.
= + + +... + = 0.99510993713863 ≈ 0.9951(TI-Befehl: binomcdf(104,0.83,95))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9951) und 'überbucht'(p=0.0049).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht: ; überbucht: ;
Die relevanten Pfade sind:
'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
'nicht überbucht'-'nicht überbucht'-'überbucht' (P=)
'nicht überbucht'-'überbucht'-'nicht überbucht' (P=)
'überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
