Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein idealer Würfel wird 20 mal geworfen. Gesucht ist die Wahrscheinlichkeit dass genau 5 mal eine 6 geworfen wird.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 5) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.
Der Binomialkoeffizient
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Somit muss d = 5, sowie c = 15 und e = 5 sein.
Bernoulli-Formel vervollständigen
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 20 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.
Für welches der aufgeführten Ereignisse könnte der Term P =
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)
Beim ersten Summand
Beim zweiten längeren Term erkennt man die Potenz
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥19)
Somit ist die gesuchte Option: Weniger als 2 mal wird eine blaue Kugel gezogen.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 19 bestimmen.
Die Anzahl der richtigen Pfade (mit 1 Treffer und 19 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,2. Es wird 50 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:
Von den ersten 20 Versuchen landen genau 4 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 5 mal auf grün gedreht.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 20
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=20 und p=0.2.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 30 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=30 und p=0.2.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 95% und im Stehen 89%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2036 ⋅ 0.5584 = 0.11369024
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7738 ⋅ 0.3451 = 0.26703838
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.89.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7738 ⋅ 0.5584 = 0.43208992
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1137 + 0.267 + 0.4321 = 0.8128
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 80% wirft 9 mal auf den Korb.
Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXOOOOOO
OXXXOOOOO
OOXXXOOOO
OOOXXXOOO
OOOOXXXOO
OOOOOXXXO
OOOOOOXXX
Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 10% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.1.
Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.1, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.1.
(TI-Befehl: binomcdf(50,0.1,4))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.4312) und 'nicht ok'(p=0.5688).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
Ereignis | P |
---|---|
kiste ok -> kiste ok | |
kiste ok -> nicht ok | |
nicht ok -> kiste ok | |
nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok:
'kiste ok'-'kiste ok' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten: