Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 40 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Gesucht ist die Wahrscheinlichkeit dass genau 3 blaue Kugeln gezogen werden.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 3) = ( a b ) dc 0.7e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 3 mal getroffen und 37 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=3 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 40 3 ) Pfade an. Da ja in jedem Pfad 3 Treffer und 37 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.730.337 oder eben (einfach vertauscht) 0.3370.73

Somit muss d = 0.3, sowie c = 37 und e = 3 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 15 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 15 a ) ( 1 6 )1 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.

In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird eine 6 gewürfelt" erkennen, also muss die Hochzahl 1 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 1 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Genau 14 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 14 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 14 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 15 1 ) , also ist a = 1 (hier ist auch a=14 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein normaler Würfel wird 23 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 18 Versuchen höchstens 1 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 1 Sechser gewürfelt werden?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 18 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=18 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P 1 6 18 (X1) ≈ 0.1728.

Analog betrachten wir nun die restlichen 5 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=5 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P 1 6 5 (Y1) = 1- P 1 6 5 (Y0) ≈ 0.5981.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P 1 6 18 (X1) P 1 6 5 (Y1) = 0.1728 ⋅ 0.5981 ≈ 0.1034

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 90% und im Stehen 82%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=4) = ( 5 4 ) 0.94 0.11 ≈ 0.3281
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=5) = ( 5 5 ) 0.825 0.180 ≈ 0.3707
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3281 ⋅ 0.3707 = 0.12162667

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=4) = ( 5 4 ) 0.824 0.181 ≈ 0.4069
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.5905 ⋅ 0.4069 = 0.24027445

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.82.

P0.825 (X=5) = ( 5 5 ) 0.825 0.180 ≈ 0.3707
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.5905 ⋅ 0.3707 = 0.21889835


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1216 + 0.2403 + 0.2189 = 0.5808

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 9 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 3 ) 0.7 3 0.3 6

Dabei gibt ja 0.7 3 0.3 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 6 Nicht-Treffern und ( 9 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOO

OXXXOOOOO

OOXXXOOOO

OOOXXXOOO

OOOOXXXOO

OOOOOXXXO

OOOOOOXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ 0.7 3 0.3 6 ≈ 0.0018

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 7% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.07.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.07, also P0.0725 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.07.

P0.0725 (X2) = P0.0725 (X=0) + P0.0725 (X=1) + P0.0725 (X=2) = 0.74656243172887 ≈ 0.7466
(TI-Befehl: binomcdf(25,0.07,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.7466) und 'nicht ok'(p=0.2534).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0.55741156
kiste ok -> nicht ok0.18918844
nicht ok -> kiste ok0.18918844
nicht ok -> nicht ok0.06421156

Einzel-Wahrscheinlichkeiten: kiste ok: 0.7466; nicht ok: 0.2534;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'kiste ok'-'kiste ok' (P=0.55741156)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.55741156 = 0.55741156