Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 75% wirft 100 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 60 mal trifft.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 60) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 100 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 60 mal getroffen und 40 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=100 und b=60 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 60 Treffer und
40 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅ oder eben (einfach vertauscht) ⋅
Somit muss d = 0.25, sowie c = 40 und e = 60 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 10%. Es wird 10 mal gedreht.
Für welches der aufgeführten Ereignisse könnte der Term P = + die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird in den grünen Bereich gedreht)Y : Anzahl der Nicht-Treffer (also es wird nicht in den grünen Bereich gedreht)
Beim ersten Summand steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=10 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 10 Nicht-Treffer an, also P(X=0) bzw. P(Y=10).
Beim zweiten längeren Term erkennt man die Potenz , bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=9).
Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥9)
Somit ist die gesuchte Option: Weniger als 2 mal wird in den grünen Bereich gedreht.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.9.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 10 Versuchen die Anzahl der "Nicht-Treffer" mit c = 9 bestimmen.
Die Anzahl der richtigen Pfade (mit 1 Treffer und 9 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 1 (hier ist auch a=9 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 25 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 12 Mädchen genau 0 einen Glückskeks mit einer Peperoni und von den Jungs genau 0 einen Glückskeks mit einer Peperoni erwischen .
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 12
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=12 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.2014.
Analog betrachten wir nun die restlichen 13 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=13 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.1762.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.2014 ⋅ 0.1762 ≈ 0.0355
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 50 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 35 am Samstag so zwischen 25 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 73% höher als am Freitag mit 46%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.46.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 35 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.46 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9998 - 0.9673 ≈ 0.0325 berechnen.
TI-Befehl: binompdf(50,0.46,35)- binompdf(50,0.46,29)
Samstag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.73.
Gesucht ist die Wahrscheinlichkeit zwischen 25 und 32 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.73 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.1034 - 0.0002 ≈ 0.1032 berechnen.
TI-Befehl: binompdf(50,0.73,32)- binompdf(50,0.73,24)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.0325 ⋅ 0.1032 ≈ 0.0034
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 80% wirft 9 mal auf den Korb.
Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 4 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXXOOOO
OXXXXXOOO
OOXXXXXOO
OOOXXXXXO
OOOOXXXXX
Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 5 ⋅ ⋅ ≈ 0.0026
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 9% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.09.
Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.09, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.09.
= + + +... + = 0.93138653918453 ≈ 0.9314(TI-Befehl: binomcdf(25,0.09,4))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.9314) und 'nicht ok'(p=0.0686).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
| Ereignis | P |
|---|---|
| kiste ok -> kiste ok | |
| kiste ok -> nicht ok | |
| nicht ok -> kiste ok | |
| nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok: ; nicht ok: ;
Die relevanten Pfade sind:
'kiste ok'-'kiste ok' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
