Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 5% wirft 100 mal auf den Korb. Gesucht ist die Wahrscheinlichkeit dass er dabei genau 35 mal trifft.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 35) = ( a b ) dc 0.05e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 100 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 35 mal getroffen und 65 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=100 und b=35 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 100 35 ) Pfade an. Da ja in jedem Pfad 35 Treffer und 65 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.05350.9565 oder eben (einfach vertauscht) 0.95650.0535

Somit muss d = 0.95, sowie c = 65 und e = 35 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 5 6 )5 + ( 5 a ) ( 1 6 )1 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand ( 5 6 )5 steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=5 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 5 Nicht-Treffer an, also P(X=0) bzw. P(Y=5).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )1, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=4).

X: Treffer:
0
1
2
3
4
5

Y: keine Treffer:
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥4)

Somit ist die gesuchte Option: Höchstens 1 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Mindestens 4 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 5 Versuchen die Anzahl der "Nicht-Treffer" mit c = 4 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 4 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 5 1 ) , also ist a = 1 (hier ist auch a=4 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Eine faire Münze wird 25 mal geworfen.
Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 10 Versuchen landen höchstens 4 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 9 mal "Zahl".

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=10 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.510 (X4) ≈ 0.377.

Analog betrachten wir nun die restlichen 15 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=15 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.515 (Y=9) ≈ 0.1527.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.510 (X4) P0.515 (Y=9) = 0.377 ⋅ 0.1527 ≈ 0.0576

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 30%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:

  • 1 mal unten und 3 mal oben
  • 2 mal unten und 2 mal oben
  • 3 mal unten und 1 mal oben

1 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=1) = ( 3 1 ) 0.51 0.52 ≈ 0.375
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=3) = ( 3 3 ) 0.33 0.70 ≈ 0.027
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.375 ⋅ 0.027 = 0.010125

2 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=2) = ( 3 2 ) 0.52 0.51 ≈ 0.375
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=2) = ( 3 2 ) 0.32 0.71 ≈ 0.189
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.189 = 0.070875

3 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=3) = ( 3 3 ) 0.53 0.50 ≈ 0.125
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=1) = ( 3 1 ) 0.31 0.72 ≈ 0.441
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.125 ⋅ 0.441 = 0.055125


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0101 + 0.0709 + 0.0551 = 0.1361

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 5 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 5 Versuchen mit der Formel von Bernoulli berechnen: ( 5 3 ) 0.7 3 0.3 2

Dabei gibt ja 0.7 3 0.3 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 2 Nicht-Treffern und ( 5 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 5 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOO

OXXXO

OOXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ 0.7 3 0.3 2 ≈ 0.0926

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 10% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.1.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.1, also P0.125 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.1.

P0.125 (X2) = P0.125 (X=0) + P0.125 (X=1) + P0.125 (X=2) = 0.53709405005094 ≈ 0.5371
(TI-Befehl: binomcdf(25,0.1,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.5371) und 'nicht ok'(p=0.4629).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0.28847641
kiste ok -> nicht ok0.24862359
nicht ok -> kiste ok0.24862359
nicht ok -> nicht ok0.21427641

Einzel-Wahrscheinlichkeiten: kiste ok: 0.5371; nicht ok: 0.4629;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'kiste ok'-'kiste ok' (P=0.28847641)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.28847641 = 0.28847641