Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,95. Gesucht ist die Wahrscheinlichkeit bei 40 Versuchen genau 13 mal im grünen Bereich zu landen.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 13) = ( a b ) 0.95c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 13 mal getroffen und 27 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=13 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 40 13 ) Pfade an. Da ja in jedem Pfad 13 Treffer und 27 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.95130.0527

Somit muss d = 0.05, sowie c = 13 und e = 27 sein.

Bernoulli-Formel vervollständigen

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 15 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 15 a ) 0.714 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.

In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird eine blaue Kugel gezogen" erkennen, also muss die Hochzahl 14 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 14 mal wird eine blaue Kugel gezogen.

Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.

Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 15 14 ) , also ist a = 14 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,6. Es wird 60 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:
Von den ersten 20 Versuchen landen genau 13 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 24 mal auf grün gedreht.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 20 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=20 und p=0.6.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.620 (X=13) ≈ 0.1659.

Analog betrachten wir nun die restlichen 40 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=40 und p=0.6.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.640 (Y24) = 1- P0.640 (Y23) ≈ 0.5681.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.620 (X=13) P0.640 (Y24) = 0.1659 ⋅ 0.5681 ≈ 0.0942

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 91% und im Stehen 90%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.

P0.915 (X=4) = ( 5 4 ) 0.914 0.091 ≈ 0.3086
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3086 ⋅ 0.5905 = 0.1822283

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.

P0.915 (X=5) = ( 5 5 ) 0.915 0.090 ≈ 0.624
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=4) = ( 5 4 ) 0.94 0.11 ≈ 0.3281
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.624 ⋅ 0.3281 = 0.2047344

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.

P0.915 (X=5) = ( 5 5 ) 0.915 0.090 ≈ 0.624
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.9.

P0.95 (X=5) = ( 5 5 ) 0.95 0.10 ≈ 0.5905
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.624 ⋅ 0.5905 = 0.368472


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1822 + 0.2047 + 0.3685 = 0.7554

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 5 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 5 Versuchen mit der Formel von Bernoulli berechnen: ( 5 4 ) 0.7 4 0.3 1

Dabei gibt ja 0.7 4 0.3 1 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 1 Nicht-Treffern und ( 5 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 5 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXO

OXXXX

Es gibt also genau 2 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 2 ⋅ 0.7 4 0.3 1 ≈ 0.1441

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 13% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 105 Tickets für ihr Flugzeug mit 96 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.87.

Gesucht ist die Wahrscheinlichkeit für höchstens 96 Treffer bei 105 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.87, also P0.87105 (X96)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.87.

P0.87105 (X96) = P0.87105 (X=0) + P0.87105 (X=1) + P0.87105 (X=2) +... + P0.87105 (X=96) = 0.93958153650023 ≈ 0.9396
(TI-Befehl: binomcdf(105,0.87,96))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9396) und 'überbucht'(p=0.0604).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0.829524131136
nicht überbucht -> nicht überbucht -> überbucht0.053324028864
nicht überbucht -> überbucht -> nicht überbucht0.053324028864
nicht überbucht -> überbucht -> überbucht0.003427811136
überbucht -> nicht überbucht -> nicht überbucht0.053324028864
überbucht -> nicht überbucht -> überbucht0.003427811136
überbucht -> überbucht -> nicht überbucht0.003427811136
überbucht -> überbucht -> überbucht0.000220348864

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0.9396; überbucht: 0.0604;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0.829524131136)
'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0.053324028864)
'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0.053324028864)
'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0.053324028864)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.829524131136 + 0.053324028864 + 0.053324028864 + 0.053324028864 = 0.989496217728