Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 80 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Gesucht ist die Wahrscheinlichkeit dass genau 20 blaue Kugeln gezogen werden.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 20) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 80 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 20 mal getroffen und 60 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=80 und b=20 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 20 Treffer und
60 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅ oder eben (einfach vertauscht) ⋅
Somit muss d = 0.3, sowie c = 60 und e = 20 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein idealer Würfel wird 15 mal geworfen.
Für welches der aufgeführten Ereignisse könnte der Term P = 1 - -
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)
Beim ersten Summand nach dem "1-", also bei
Beim zweiten längeren Term erkennt man die Potenz
Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 15 und 14 Treffer möglich sind, also 13, 12, ..., kurz P(X≤13) bzw. P(Y≥2).
Somit ist die gesuchte Option: Höchstens 13 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Mehr als 1 mal wird keine 6 gewürfelt.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,16 entsteht. Es wird eine Stichprobe der Menge 60 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 2 defekt sind und von den restlichen der Stickprobe höchstens 18 nicht funktionieren.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.16.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 50 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=50 und p=0.16.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 92% und im Stehen 85%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2866 ⋅ 0.4437 = 0.12716442
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6591 ⋅ 0.3915 = 0.25803765
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6591 ⋅ 0.4437 = 0.29244267
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1272 + 0.258 + 0.2924 = 0.6776
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 60%. Es wird 9 mal gedreht.
Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 9 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXOOOOO
OXXXXOOOO
OOXXXXOOO
OOOXXXXOO
OOOOXXXXO
OOOOOXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 15 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 83% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.83.
Gesucht ist die Wahrscheinlichkeit für mindestens 15 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.83,
also
Dies berechnet man über die Gegenwahrscheinlichkeit:
≈ 1 - 0.1098 ≈ 0.8902 (TI-Befehl: 1-binompdf(20,0.83,14))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.8902) und 'zu wenig'(p=0.1098).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
| Ereignis | P |
|---|---|
| genügend Treffer -> genügend Treffer | |
| genügend Treffer -> zu wenig | |
| zu wenig -> genügend Treffer | |
| zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer:
'genügend Treffer'-'zu wenig' (P=
'zu wenig'-'genügend Treffer' (P=
'genügend Treffer'-'genügend Treffer' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
