Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 20 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Gesucht ist die Wahrscheinlichkeit dass genau 19 blaue Kugeln gezogen werden.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 19) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 20 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 19 mal getroffen und 1 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=20 und b=19 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 19 Treffer und
1 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.3, sowie c = 19 und e = 1 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Ein idealer Würfel wird 20 mal geworfen.
Für welches der aufgeführten Ereignisse könnte der Term P = 1 - -
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)
Beim ersten Summand nach dem "1-", also bei
Beim zweiten längeren Term erkennt man die Potenz
Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 20 und 19 Treffer möglich sind, also 18, 17, ..., kurz P(X≤18) bzw. P(Y≥2).
Somit ist die gesuchte Option: Weniger als 19 mal wird eine 6 gewürfelt.
Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.
Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 19 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 25 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 5 richtig errät?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4
Durchgänge:
Die Zufallsvariable X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 21 Durchgänge:
Die Zufallsvariable Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=21 und p=0.25.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 65 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 24 und 38 am Samstag so zwischen 23 und 26 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 62% höher als am Freitag mit 54%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=65 und p=0.54.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 38 Treffer bei 65 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.54 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binompdf(65,0.54,38)- binompdf(65,0.54,23)
Samstag:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.62.
Gesucht ist die Wahrscheinlichkeit zwischen 23 und 26 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.62 zu erzielen, alsoDiese Wahrscheinlichkeit lässt sich als
TI-Befehl: binompdf(50,0.62,26)- binompdf(50,0.62,22)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.799 ⋅ 0.0886 ≈ 0.0708
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 10% wirft 10 mal auf den Korb.
Bestimme die Wahrscheinlichkeit, dass er bei diesen 10 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 10 Versuchen mit der Formel von Bernoulli
berechnen:
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXXOOOOO
OXXXXXOOOO
OOXXXXXOOO
OOOXXXXXOO
OOOOXXXXXO
OOOOOXXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 15% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 106 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.85.
Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 106 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.85, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.85.
(TI-Befehl: binomcdf(106,0.85,93))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.8215) und 'überbucht'(p=0.1785).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht:
'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=
'nicht überbucht'-'nicht überbucht'-'überbucht' (P=
'nicht überbucht'-'überbucht'-'nicht überbucht' (P=
'überbucht'-'nicht überbucht'-'nicht überbucht' (P=
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
