Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 40%. Es wird 4 mal gedreht.
Bestimme die Wahrscheinlichkeit dafür, dass bei der zweiten Drehung nicht der grüne Bereich erzielt wird.
Da hier ja nur eine Aussage über den 2-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 2-te Versuch
betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)
Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 1 - 0,4 = ≈ 0.6 .
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
8! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= 9
Binomialkoeffizient Anwendungen
Beispiel:
Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 6 Möglichkeiten für 5er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 1! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
6 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.
Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 17 dabei ist?
Es gibt insgesamt = = = 52360 verschiedene Möglichkeiten, die 4 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 4 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 17 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 17 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 34 Zahlen (alle außer der 17) zu setzen, also = = = 5984.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.1143, also ca. 11.43%.
Formel v. Bernoulli
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 95% entsteht. Es wird eine Stichprobe der Menge 27 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 27 defekte Chips enthalten sind.
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=27 und p=0.95.
= =0.25034408974245≈ 0.2503(TI-Befehl: binompdf(27,0.95,27))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.7.
Wenn P(X ≥ k) ≥ 0.7 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.7 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.7=0.3 als Wahrscheinlichkeit übrig bleiben darf.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
k | P(X = k) | P(x) ≤ k |
---|---|---|
0 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
1 | ≈ 0.04 | ≈ 0.01 + 0.04 = 0.05 |
2 | ≈ 0.11 | ≈ 0.05 + 0.11 = 0.16 |
3 | ≈ 0.19 | ≈ 0.16 + 0.19 = 0.35 |
Während P(x ≤ 2) = 0.16 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(x ≤ 3) = 0.35 klar darüber.
Oder andersrum: P(X ≥ 3) = 1 - P(x ≤ 2) = 0.84 (die Summe der blauen Säulenhöhen von 3 bis 14) ist klar über der geforderten Wahrscheinlichkeit von 0.7, während P(X ≥ 4) = 1 - P(x ≤ 3) = 0.65 (die Summe der Säulenhöhen von 4 bis 14) klar darunter liegt.
Somit ist das gesuchte k = 3.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 80 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 43 mal "Zahl" (p=0,5) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=80 und p=0.5.
= + + +... + = 0.78297887232726 ≈ 0.783(TI-Befehl: binomcdf(80,0.5,43))
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 32 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 5 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
(TI-Befehl: 1-binomcdf(32,,4))
Binomialverteilung X ∈ [l;k]
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,75 entsteht. Es wird eine Stichprobe der Menge 59 entnommen. Wie groß ist die Wahrscheinlichkeit, dass die Anzahl der defekten Chips mindestens 41 und höchstens 46 beträgt?
=
(TI-Befehl: binomcdf(59,0.75,46) - binomcdf(59,0.75,40))