Aufgabenbeispiele von Basics
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
0 oder 1 Treffer bei n Versuchen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Dabei entsteht mit einer Wahrscheinlichkeit von p=0,2 Ausschuss. Es werden nacheinander 3 Chips als Stichprobe entnommen.
Bestimme die Wahrscheinlichkeit dafür, dass alle entnommenen Chips fehlerfrei funktionieren.
Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass ein entnommener Chips nicht defekt ist) q = 1 - 0,2 = beträgt, muss die Wahrscheinlichkeit für 3 Nicht-Treffer bei 3 Versuchen P = ≈ 0.512 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.
Binomialkoeffizient
Beispiel:
Berechne ohne Taschenrechner:
Wenn man von der allgememeinen Formel für den Binomialkoeffizient
= =
=
ausgeht, sieht man schnell, dass man mit der
3! = 3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:
=
= (gekürzt mit 3)
= (gekürzt mit 2)
= 20
Binomialkoeffizient Anwendungen
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 2 Schülerinnen. Diese möchte sie zufällig aus der 25-köpfigen Sportgruppe losen. Wie viele verschiedene 2er-Gruppen sind so möglich?
Für die erste Stelle ist jede Schülerin möglich. Es gibt also 25 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 24 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die
verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten
Wir müssen deswegen die 600 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 300 Möglichkeiten für 2er-Gruppen, die aus 25 Elementen (Schülerinnen) gebildet werden.
Die hier durchgeführte Berechnung könnte man mit 23! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:
300 = = = =
Wahrscheinlichkeiten mit Binom.Koeff.
Beispiel:
In einer Urne befinden sich 25 Kugeln, die mit den Zahlen 1 bis 25 beschriftet sind.
Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 12 dabei ist?
Es gibt insgesamt = = = 53130 verschiedene Möglichkeiten, die 5 Kugeln aus den 25 zu ziehen, bzw. von 25 Zahlen 5 anzukreuzen.
Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 12 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 25 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 12 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 24 Zahlen (alle außer der 12) zu setzen, also = = = 10626.
Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:
P = = ≈ 0.2, also ca. 20%.
Formel v. Bernoulli
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, genau 6 Glückskekse mit einer Peproni zu erwischen, wenn man 44 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=44 und p=.
= =0.16846608136702≈ 0.1685(TI-Befehl: binompdf(44,1/8,6))
kumulierte WS aus Histogramm finden
Beispiel:
In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.45.
Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:
| k | P(X = k) | P(x) ≤ k |
|---|---|---|
| 0 | ≈ 0 | ≈ 0 + 0 = 0 |
| 1 | ≈ 0 | ≈ 0 + 0 = 0 |
| 2 | ≈ 0.01 | ≈ 0 + 0.01 = 0.01 |
| 3 | ≈ 0.05 | ≈ 0.01 + 0.05 = 0.06 |
| 4 | ≈ 0.1 | ≈ 0.06 + 0.1 = 0.16 |
| 5 | ≈ 0.17 | ≈ 0.16 + 0.17 = 0.33 |
| 6 | ≈ 0.21 | ≈ 0.33 + 0.21 = 0.54 |
Während P(x ≤ 5) = 0.33 also noch klar unter der geforderten Wahrscheinlichkeit von 0.45 liegt, ist P(x ≤ 6) = 0.54 klar darüber.
Somit ist das gesuchte k = 6.
kumulierte Binomialverteilung
Beispiel:
Eine Münze wird 46 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass höchstens 25 mal "Zahl" (p=0,5) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=46 und p=0.5.
= + + +... + = 0.76930440893162 ≈ 0.7693(TI-Befehl: binomcdf(46,0.5,25))
Binomialverteilung X>=k
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, 4 oder mehr Glückskekse mit einer Peproni zu erwischen, wenn man 97 Glückskekse kauft?
(Bitte auf 4 Stellen nach dem Komma runden)
(TI-Befehl: 1-binomcdf(97,0.125,3))
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Würfel wird 66 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 7 mal, aber weniger als 18 mal eine sechs gewürfelt wird?
=
(TI-Befehl: binomcdf(66,,17) - binomcdf(66,,7))
