Aufgabenbeispiele von Bruchverständnis
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bruch erkennen
Beispiel:
(Alle Sektoren sind gleich groß)
Gib den im Schaubild eingefärbten Bruch an.
Wir können insgesamt 10 Quadrate erkennen.
Davon sind 4 eingefärbt.
Es sind also 4 von 10 eingefärbt, somit ist der Bruch:
Bruch in natürliche Zahl umrechnen
Beispiel:
Gib t ohne Bruch in kg an.
1 t sind ja 1000 kg.
Also sind eine t doch gerade 1 kg.
Anteile von ganzen Dingen
Beispiel:
Wie viel sind von 63 Kartoffeln ?
Ein von 63 Kartoffeln sind 63 : 7 = 9 Kartoffeln.
Also sind von 63 Kartoffeln 2 ⋅ 9 = 18 Kartoffeln.
Anteile von Zehnereinheiten
Beispiel:
Wie viel sind von 1 m² ?
Zuerst rechnen wir 1m² in 100 dm² um.
Ein von 100 dm² sind 100 dm² : 4 = 25 dm².
von 1dm² sind also 3 ⋅ 25 dm² = 75 dm².
Anteile von Zeiteinheiten
Beispiel:
Wie viel sind von 1 d(Tage) ?
Zuerst rechnen wir 1d(Tage) in 24 h um.
Ein von 24 h sind 24 h : 2 = 12 h.
Erweitern einfach
Beispiel:
Erweitere den Bruch mit 5
Beim Erweitern multiplizieren wir einfach Zähler und Nenner mit der gleichen Zahl 5:
= =
Kürzen (einzel)
Beispiel:
Kürze vollständig:
Wir probieren alle Primzahlen durch, ob sie vielleicht beide Teiler von Zähler (28) und Nenner (42) sind:
=
(natürlich hätte man auch gleich auf einmal mit 14 kürzen können).
Erweitern
Beispiel:
Erweitere den Bruch auf den Nenner 63
Der Bruch soll so erweitert werden, dass aus dem alten Nenner 7 nachher der neue Nenner 63 wird.
Wir müssen also mit 63 : 7 = 9 erweitern.
= =
Darstellungwechsel Bruch - Prozent
Beispiel:
Gib 15 % als gekürzten Bruch an.
15% bedeutet ja einfach . Jetzt müssen wir nur noch kürzen:
15% = =
Bruch am Zahlenstrahl
Beispiel:
Gib den markierten Bruch an der Zahlengeraden an:
Zuerst zählen wir die Strichchen zwischen 0 und 1 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge hat.
Das die Markierung auf dem 4-ten Strichchen liegt, muss im Zähler des gesuchten Bruchs die Zahl 4 stehen.
Der gesuchte Bruch ist also:
gemischter Bruch am Zahlenstrahl
Beispiel:
Gib den markierten Bruch an der Zahlengeraden als vollständig gekürzten gemeinen (gewöhnlichen) Bruch und als gemischten Bruch an:
Zuerst zählen wir die Strichchen zwischen -1 und -2 und erkennen, dass diese Strichchen eine Einheit in 5 gleichgroße Teile unterteilt, von denen somit jedes die Länge hat.
Da die Markierung auf dem 3-ten Strichchen zwischen -1 und -2 liegt, muss der gemischte Bruch sein.
Der gesuchte Bruch ist also: = =
Brüche vergleichen
Beispiel:
Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:
Vergleich von und
Man sieht sehr schnell. dass diese beiden Brüche die gleichen Zähler haben. In diesem Fall ist derjenige Bruch größer, der den kleineren Nenner hat (Schließlich bleibt mehr von einer Menge übrig, wenn man diese durch weniger Leute teilt als wenn man sie durch mehr teilt). Es gilt hier also <
Vergleich von und
Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 7 teilt, als bei der kleineren, wenn man diese durch 7 teilt). Es gilt hier also >
Vergleich von und
Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:
=
Also gilt: = < .
Es gilt hier also <Mitte finden (von 2 Brüchen)
Beispiel:
Welcher Bruch liegt in der Mitte von und ?
Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.
Somit ist also genau in der Mitte zwischen und .
Mitte finden (von 2 versch. Brüchen)
Beispiel:
Welcher Bruch liegt in der Mitte von und ?
Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.
Dazu erweitern wir hier einfach jeweils mit dem Nenner des anderen Bruchs:
= und =
Die Mitte zwischen 9 und 49 ist = 29
Somit ist also genau in der Mitte zwischen = und = .
3 Brüche sortieren
Beispiel:
Sortiere die drei Brüche , und von klein nach groß.
Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:
= = + = + =
= = + = + =
Man erkennt, dass alle drei Brüche zwischen 2 und 3 liegen. ist dabei aber die größte Zahl, weil sie als einzige größer als ist. Das erkennt man daran, dass bei der Zähler über der Hälfte vom Nenner ist.
Bleibt noch zu entscheiden, ob oder größer ist.
Da ja beide die 2 vorne haben, müssen wir dazu nur die Brüche
und betrachten.
Und weil beide Brüche die 1 im Zähler haben, muss die kleinere Zahl sein, weil ja die 1 durch mehr geteilt werden muss als bei .
(Alle Sektoren sind gleich groß)
(Alle Sektoren sind gleich groß)
Somit ergibt sich folgende Reihenfolge:
< < , also
< <
Umwandlung echter - gemischter Bruch
Beispiel:
Gib den unechten Bruch als gemischten Bruch an.
(Der Bruch soll in gekürzter Form bleiben.)
Wir schauen zuerst, wie oft der Nenner in den Zähler passt und was dann noch als Rest übrig bleibt:
11 = 9 + 2 = 3⋅3 + 2
also gilt:
= = + = 3 +
Somit gilt: =