Aufgabenbeispiele von antiproportional
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 50 mal fahren.
Wie oft müssten 10 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 10 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 50 Fuhren durch 10 teilen, um auf den Wert zu kommen, der den 10 Lastwagen entspricht:
⋅ 10
|
|
: 10
|
⋅ 10
|
|
: 10
|
Damit haben wir nun den gesuchten Wert, der den 10 Lastwagen entspricht: 5 Fuhren
Dreisatz (antiproportional)
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 5 Helfer:innen einstellt, reicht es für jeden 80 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
: 5
|
|
⋅ 5
|
: 5
|
|
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 4
|
|
⋅ 5
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 400 € Lohn in der mittleren Zeile durch 4 dividieren:
: 5
⋅ 4
|
|
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 100 € Lohn
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
12 Gäste | 5 Spezi-Flaschen |
? | ? |
15 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 15 sein, also der ggT(12,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Gäste:
|
Um von 12 Gäste in der ersten Zeile auf 3 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 3 Gäste links entspricht:
: 4
|
|
⋅ 4
|
: 4
|
|
⋅ 4
|
Jetzt müssen wir ja wieder die 3 Gäste in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 5
|
|
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Spezi-Flaschen in der mittleren Zeile durch 5 dividieren:
: 4
⋅ 5
|
|
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Gäste entspricht: 4 Spezi-Flaschen
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn 4 Personen das Schulhaus putzen, brauchen sie dafür 15 h.
Wie lange bräuchten 3 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 4 h putzen müsste?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 4 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 15 h nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
: 4
|
|
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 3
|
|
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Personen entspricht: 20 h
Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 4 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 15 h teilen müssen.) Diese Zahl sollte eine Teiler von 15 und von 4 sein, also der ggT(15,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 h:
|
Um von 15 h in der ersten Zeile auf 1 h in der zweiten Zeile zu kommen, müssen wir durch 15 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Personen nicht durch 15 teilen, sondern mit 15 multiplizieren um auf den Wert zu kommen, der den 1 h links entspricht:
: 15
|
|
⋅ 15
|
Jetzt müssen wir ja wieder die 1 h in der mittleren Zeile mit 4 multiplizieren, um auf die 4 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 15
⋅ 4
|
|
⋅ 15
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 h entspricht: 15 Personen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 140 Lose den 4 € Lospreis entsprechen.
: 7
⋅ 4
|
|
⋅ 7
: 4
|
Der Wert 140 Lose war also korrekt.
Jetzt überprüfen wir, ob die 38 Lose den 14 € Lospreis entsprechen.
: 1
⋅ 2
|
|
⋅ 1
: 2
|
Der Wert 38 Lose war also falsch, richtig wäre 40 Lose gewesen.