Aufgabenbeispiele von Verortung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Vorgänger Nachfolger
Beispiel:
Bestimme den Vorgänger und den Nachfolger der Zahl 3027
Der Vorgänger der Zahl 3027 ist 3026.
Denn wenn man nach 3026 weiterzählt, kommt ja als nächste Zahl 3027.
Der Nachfolger der Zahl 3027 ist 3028.
Denn wenn man nach 3027 weiterzählt, kommt ja als nächste Zahl 3028.
am Zahlenstrahl finden
Beispiel:
Gib die markierte Zahl am Zahlenstrahl an:
Zuerst müssen wir wissen, wieviel ein Strichchen auf der Skala ausmacht. Dazu nimmt man zwei benachbarte Zahlen auf der Skala, z.B. 40 und 45, und nimmt dann die Differenz der beiden Zahlen: 45 - 40 = 5
Wenn 5 Strichchen 5 bedeutet, dann steht doch 1 Strichchen immer für 1.
Also ist die Zahl beim Strichchen um 3 1er-Einheiten größer als 40, also 40 + 3⋅1 = 40 + 3 = 43.
Die gesuchte Zahl ist also: 43
Runden
Beispiel:
Runde die Zahl 9721 auf Hunderter:
Wenn wir eine Zahl auf Hunderter, also auf 100er runden, müssen auf Ende 2 Nullen dastehen.
Also müssen wir auf die vorletzte Stelle schauen, ob wir auf- oder abrunden müssen.
Und weil da eine 2 steht, müssen wir abrunden zu 9700.
Die gesuchte Zahl ist also: 9700
vom Wort zur Zahl
Beispiel:
Schreibe die Zahl
sechstausendsechs
in Ziffern.
Wenn man das lange Zahlenwort immer bei den Schlüsselwörtern "Milliarden", "Millionen", und "tausend" unterteilt, erkennt man, dass sich hinter
dem Buchstabenungetüm sechstausend sechs die Zahl
6 006 verbrigt.
Vorgänger Nachfolger verbal
Beispiel:
Bestimme den Vorgänger und den Nachfolger der Zahl fünfhundert
Als erstes müssen wir die Buchstabenzahl in Ziffern übersetzen:
fünfhundert = 500
Der Vorgänger der Zahl 500 ist 499.
Denn wenn man nach 499 weiterzählt,
kommt ja als nächste Zahl 500.
Der Nachfolger der Zahl 500 ist 501.
Denn wenn man nach 500 weiterzählt,
kommt ja als nächste Zahl 501.
Runden rückwärts
Beispiel:
Bestimme die kleinste und die größte Zahl, die auf Hunderter gerundet 3000 ergibt:
Am einfachsten ist es wahrscheinlich, wenn wir zuerst schauen, was den die nächst kleinere und die nächst größere Zahl wäre, die auf Hunderter gerundet ist.
Die nächst größere wäre 3000 + 100 = 3 100.
Die nächst kleinere wäre 3000 - 100 = 2 900.
Wenn wir nun also die kleinste Zahl suchen, die auf Hunderter gerundet 3000 ergibt,
muss die doch in der Nähe der Mitte
zwischen 3000 und 2 900 liegen:
2 949 wird zu 2 900 abgerundet.
2 950 wird zu 3000 aufgerundet, also ist 2 950 die gesuchte kleinste Zahl.
Wenn wir dann noch die größte Zahl suchen, die auf Hunderter gerundet 3000 ergibt,
suchen wir in der Nähe der Mitte
zwischen 3000 und 3 100:
3 050 wird zu 3 100 aufgerundet.
3 049 wird zu 3000 abgerundet, also ist 3 049 die gesuchte größte Zahl.
kleinste und größte Zahl
Beispiel:
Die Zahlenkärtchen kann man durch unterschiedliche Reihenfolgen zu verschiedenen Zahlen zusammenlegen.
Bestimme die zweitgrößte Zahl, die dabei möglich ist.
2 1 62 8 4 9
Wir sortieren zuerst die Kärtchen nach der ersten Ziffer:
1: 1
2: 2
4: 4
6: 62
8: 8
9: 9
Weil wir nach einer großen Zahl suchen, müssen die großen Ziffern ganz links stehen, weil dort der Stelle ja am meisten Gewicht hat (z.B.: 91 ist ja viel mehr als 19).
Schwieriger wird es, wenn mehrere Kärtchen die gleiche Ziffer (vorne haben). Dann müssen wir auf die zweite (oder manchmal sogar auf die dritte) Ziffer schauen:
Für die größtmögliche Zahl ergibt sich somit folgende Reihenfolge :
9 8 62 4 2 1 , also 9 862 421
Wir suchen ja aber nicht die größte sondern nur die zweitgrößte Zahl.
Deswegen müssen wir die "optimale" Reihenfolge an einer Stelle verändern. Am wenigsten fällt dies bei den beiden letzten Kärtchen ins Gewicht, weil dort die kleinsten Stellen (Einer, Zehner, ..) sind.
Somit ergibt sich als neue Reihenfolge :
9 8 62 4 1 2 , also 9 862 412
