Aufgabenbeispiele von Körper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Volumeneinheiten umrechnen

Beispiel:

Wandle das Volumen in die angegebene Einheit um: 14600000000 mm³ = ..... Liter

Lösung einblenden
Die korrekte Antwort lautet:
14600000000 mm³ = 14600 Liter

Raumeinheiten verrechnen

Beispiel:

Berechne und gib das Ergebnis in cm³ an:

108 dm³ - 1120 cm³

Lösung einblenden

Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:

108 dm³ = 108000 cm³

Jetzt können wir die beiden Werte gut verrechnen:

108 dm³ - 1120 cm³
= 108000 cm³ - 1120 cm³
= 106880 cm³

Volumen - Masse bei Wasser

Beispiel:

Ein Kubikzentimeter Wasser wiegt ein Gramm.

Wie viel wiegen 14 l Wasser ?

Lösung einblenden

1 l entspricht ja 1 dm³

1 cm³ ≙ 1 g
1000 cm³ ≙ 1000 g
also 1 dm³ ≙ 1 kg

Somit wiegen 14 l Wasser eben 14 kg

Volumen eines Quaders

Beispiel:

Ein Quader ist 5 mm lang, 3 mm breit und 8 mm hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 5 mm ⋅ 3 mm ⋅ 8 mm
= 120 mm³

Quadervolumen offen

Beispiel:

Ein Quader ist hat das Volumen 12 dm³. Jede der drei Kantenlänge ist größer als 1 dm.

Bestimme mögliche Kantenlängen a, b und c.

Lösung einblenden

Mögliche Werte wären z.B.:
a = 2 dm
b = 2 dm
c = 3 dm,
denn V = a ⋅ b ⋅ c = 2 dm ⋅ 2 dm ⋅ 3 dm = 12 dm³.

Volumen auch rückwärts

Beispiel:

Ein Quader ist 6 mm lang, 5 mm hoch und hat das Volumen V = 300 mm³. Bestimme die Breite b des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 300 mm³ = 6 mm ⋅ ⬜ ⋅ 5 mm

300 mm³ = ⬜ ⋅ 30 mm²

Das Kästchen kann man also mit 300 mm³ : 30 mm² = 10 mm berechnen.

Oberfläche eines Quaders

Beispiel:

Ein Quader ist 6 cm lang, 8 cm breit und 5 cm hoch. Bestimme die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅6 cm⋅8 cm + 2⋅6 cm⋅5 cm + 2⋅8 cm⋅5 cm
= 96 cm² + 60 cm² + 80 cm²
= 236 cm²

Volumen auch rückwärts + Oberfl.

Beispiel:

Ein Quader ist 4 dm lang, 5 dm hoch und hat das Volumen V = 80 dm³. Bestimme die Breite b und die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 80 dm³ = 4 dm ⋅ ⬜ ⋅ 5 dm

80 dm³ = ⬜ ⋅ 20 dm²

Das Kästchen kann man also mit 80 dm³ : 20 dm² = 4 dm berechnen.

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅4 dm⋅5 dm + 2⋅4 dm⋅4 dm + 2⋅5 dm⋅4 dm
= 40 dm² + 32 dm² + 40 dm²
= 112 dm²

Würfel V+O rückwärts

Beispiel:

Ein Würfel hat das Volumen V = 1000 dm³. Berechne die Kantenlänge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3

Es gilt somit:

1000 dm³ = ⬜3

Mit gezieltem Probieren findet man, dass dies mit a = 10 dm funktioniert.

Schrägbild zeichnen

Beispiel:

Zeichne in ein Koordinatensystem die Eckpunkte A(1|3), B(6|3), C(9|6) und G(9|8) ein und verbinde diese der Reihe nach.

Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 5 Einheiten (oder 10 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(9-5|6) = D(4|6).

An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 8-6 = 2. Somit muss auch der Punkt E genau 2 Einheiten über dem Punkt A(1|3) liegen, also bei E(1|3+2) = E(1|5).

Gleiches gilt auch für den Punkt F, der genau 2 Einheiten über dem Punkt B(6|3) liegen muss, also bei F(6|3+2) = F(6|5).

Gleiches gilt auch für den Punkt H, der genau 2 Einheiten über dem Punkt D(4|6) liegen muss, also bei H(4|6+2) = H(4|8).