Aufgabenbeispiele von Wiederholung aus 9/10

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (mind)

Beispiel:

Der, dessen Name nicht genannt werden darf, testet Zauber um seine Nase wiederherzustellen. Ein solcher Versuch endet zu 15% mit einer Konfettiexplosion. Wie viele Versuche muss er mindestens machen, damit er mit einer Wahrscheinlichkeit von mindestens 90% mindestens 22 Nasen hat.

Lösung einblenden
nP(X≤k)
......
260.3495
270.2097
280.1152
290.0586
......

Die Zufallsgröße X gibt die Anzahl der geglückten Nasen-Zauberversuche an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.

Es muss gelten: P0.85n (X22) ≥ 0.9

Weil man ja aber P0.85n (X22) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.85n (X22) = 1 - P0.85n (X21) ≥ 0.9 |+ P0.85n (X21) - 0.9

0.1 ≥ P0.85n (X21) oder P0.85n (X21) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei 22 0.85 ≈ 26 Versuchen auch ungefähr 22 (≈0.85⋅26) Treffer auftreten.

Wir berechnen also mit unserem ersten n=26:
P0.85n (X21) ≈ 0.3495 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=29 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 29 sein, damit P0.85n (X21) ≤ 0.1 oder eben P0.85n (X22) ≥ 0.9 gilt.

Binomialverteilung X ∈ [l;k]

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,4. Wie groß ist die Wahrscheinlichkeit bei 66 Versuchen, mehr als 26 mal und höchstens 31 mal im grünen Bereich zu landen?

Lösung einblenden

P0.466 (27X31) =

...
24
25
26
27
28
29
30
31
32
33
...

P0.466 (X31) - P0.466 (X26) ≈ 0.8992 - 0.5134 ≈ 0.3858
(TI-Befehl: binomcdf(66,0.4,31) - binomcdf(66,0.4,26))

Binomialvert. mit variablem p (diskret)

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 25 gezogenen Kugeln nicht mehr als 24 schwarze sind?

Lösung einblenden
pP(X≤24)
......
8 11 0.9997
9 12 0.9992
10 13 0.9986
11 14 0.9976
12 15 0.9962
13 16 0.9944
14 17 0.9922
15 18 0.9895
16 19 0.9864
17 20 0.9828
18 21 0.9788
19 22 0.9744
20 23 0.9696
21 24 0.9645
22 25 0.9591
23 26 0.9533
24 27 0.9474
25 28 0.9412
26 29 0.9348
27 30 0.9282
28 31 0.9215
29 32 0.9147
30 33 0.9077
31 34 0.9007
32 35 0.8936
33 36 0.8864
34 37 0.8792
35 38 0.872
36 39 0.8648
37 40 0.8576
38 41 0.8504
39 42 0.8432
......

Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Es muss gelten: Pp25 (X24) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp25 (X24) ('höchstens 24 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 8 11 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 38 41 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 38 sein.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 99 Wiederholungen 59 mal (oder mehr) rot zu treffen bei mind. 70% liegt?

Lösung einblenden
pP(X≥59)=1-P(X≤58)
......
0.570.3387
0.580.4151
0.590.4951
0.60.5758
0.610.6538
0.620.7262
......

Es muss gelten: Pp99 (X59) =0.7 (oder mehr)

oder eben: 1- Pp99 (X58) =0.7 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(99,X,58) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.62 die gesuchte Wahrscheinlichkeit über 0.7 ist.

kumulierte Binomialverteilung

Beispiel:

Ein Würfel wird 96 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass nicht öfter als 9 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=96 und p= 1 6 .

P 1 6 96 (X9) = P 1 6 96 (X=0) + P 1 6 96 (X=1) + P 1 6 96 (X=2) +... + P 1 6 96 (X=9) = 0.031082376404282 ≈ 0.0311
(TI-Befehl: binomcdf(96,1/6,9))

Binomialvert. Abstand vom Erwartungswert

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,4. Wie groß ist die Wahrscheinlichkeit bei 53 Versuchen, dass die Anzahl der Treffer im grünen Bereich nicht mehr als 20% vom Erwartungswert abweicht?

Lösung einblenden

Den Erwartungswert berechnet man als E=n⋅p=53⋅0.4 = 21.2

Die 20% Abweichung wären dann zwischen 80% von 21.2, also 0.8⋅ 21.2 = 16.96 und 120% von 21.2, also 1.2⋅ 21.2 = 25.44

Da die Trefferzahl ja nicht weiter von 21.2 entfernt sein darf als 16.96 bzw. 25.44, muss sie also zwischen 17 und 25 liegen.

P0.453 (17X25) =

...
14
15
16
17
18
19
20
21
22
23
24
25
26
27
...

P0.453 (X25) - P0.453 (X16) ≈ 0.8854 - 0.0923 ≈ 0.7931
(TI-Befehl: binomcdf(53,0.4,25) - binomcdf(53,0.4,16))