Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 60% kein Spitzel in dieser Projektgruppe ist?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 20 | 0.6676 |
| 21 | 0.6543 |
| 22 | 0.6412 |
| 23 | 0.6283 |
| 24 | 0.6158 |
| 25 | 0.6035 |
| 26 | 0.5914 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=25 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialverteilung X>=k
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,2 entsteht. Es wird eine Stichprobe der Menge 33 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon 6 oder sogar noch mehr Chips defekt sind?
(Bitte auf 4 Stellen nach dem Komma runden)
(TI-Befehl: 1-binomcdf(33,0.2,5))
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 25 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 25 gezogenen Kugeln nicht mehr als 24 schwarze sind?
| p | P(X≤24) |
|---|---|
| ... | ... |
| 0.9998 | |
| 0.9996 | |
| 0.9992 | |
| 0.9988 | |
| 0.9981 | |
| 0.9973 | |
| 0.9962 | |
| 0.9949 | |
| 0.9934 | |
| 0.9916 | |
| 0.9895 | |
| 0.9872 | |
| 0.9846 | |
| 0.9818 | |
| 0.9788 | |
| 0.9755 | |
| 0.9721 | |
| 0.9684 | |
| 0.9645 | |
| 0.9605 | |
| 0.9562 | |
| 0.9519 | |
| 0.9474 | |
| 0.9427 | |
| 0.938 | |
| 0.9332 | |
| 0.9282 | |
| 0.9232 | |
| 0.9181 | |
| 0.9129 | |
| 0.9077 | |
| 0.9024 | |
| 0.8971 | |
| 0.8918 | |
| 0.8864 | |
| 0.881 | |
| 0.8756 | |
| 0.8702 | |
| 0.8648 | |
| 0.8594 | |
| 0.854 | |
| 0.8486 | |
| ... | ... |
Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.
Es muss gelten: = 0.85 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 4 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 24 Treffer bei 25 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 50 sein.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Eine Produktionsstätte für HighTech-Chips hat Probleme mit der Qualitätssicherung. Ein Großhändler nimmt die übliche Liefermenge von 78 Stück nur an, wenn nicht mehr als 66 Teile defekt sind. Wie hoch darf der Prozentsatz der fehlerhaften Teile höchstens sein, dass eine Lieferung mit einer Wahrscheinlichkeit von mind. 90% angenommen werden.
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.74 | 0.9913 |
| 0.75 | 0.9857 |
| 0.76 | 0.9769 |
| 0.77 | 0.9636 |
| 0.78 | 0.9442 |
| 0.79 | 0.9169 |
| 0.8 | 0.8796 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(78,X,66) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.79 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Formel v. Bernoulli
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 33 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Wie groß ist die Wahrscheinlichkeit dass genau 21 mal eine blaue Kugel gezogen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=33 und p=0.7.
= =0.10532190559013≈ 0.1053(TI-Befehl: binompdf(33,0.7,21))
Erwartungswert, Standardabweichung best.
Beispiel:
Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 29 und p = 0.35
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .
Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 29 und p = 0.35 einsetzen muss:
Erwartungswert E(X) = n ⋅ p = 29 ⋅ 0.35 = 10.15
Standardabweichung S(X) = = = ≈ 2.57
