Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Beim Biberacher Schützenfest läuft ein 12-köpfiger historischer Spielmannszug mit, der an die Schweden während des 30-Jährigen Kriegs erinnert. Dabei feiern dessen Mitglieder manchmal so ausgelassen, dass die Wahrscheinlichkeit eines Ausfall beim Umzug wegen unverhältnismäßig exzessiven Alkoholgenuss bei 11% liegt. Wie viele Schwedenmusiker muss die Schützendirektion mindestens ausbilden, damit beim Umzug mit mindestens 70%-iger Wahrscheinlichkeit mindestens 12 Schweden einsatzfähig sind?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 13 | 0.427 |
| 14 | 0.1939 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der einsatzfähigen Schwedenmusiker an und ist im Idealfall binomialverteilt mit p = 0.89 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 89% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 13 Versuchen auch ungefähr 12 (≈0.89⋅13) Treffer auftreten.
Wir berechnen also mit unserem ersten n=13:
≈ 0.427
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=14 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 14 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.
Formel v. Bernoulli
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=0,75. Wie groß ist die Wahrscheinlichkeit dass er von 59 Versuchen genau 38 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=59 und p=0.75.
= =0.021097325750255≈ 0.0211(TI-Befehl: binompdf(59,0.75,38))
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 15 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 15 gezogenen Kugeln nicht mehr als 6 rote sind?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.5199 | |
| 0.6852 | |
| 0.797 | |
| ... | ... |
Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=15 und unbekanntem Parameter p.
Es muss gelten: =0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 6 Treffer bei 15 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 6=⋅15 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 3 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
9 sein.
Also werden noch 6 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 41 Ausspielungen nicht öfters als 26 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.49 | 0.9779 |
| 0.5 | 0.9702 |
| 0.51 | 0.9605 |
| 0.52 | 0.9483 |
| 0.53 | 0.9332 |
| 0.54 | 0.915 |
| 0.55 | 0.8933 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(41,X,26) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.54 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein Würfel wird 99 mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass mehr als 7 mal, aber weniger als 26 mal eine sechs gewürfelt wird?
=
(TI-Befehl: binomcdf(99,,25) - binomcdf(99,,7))
Erwartungswert, Standardabweichung best.
Beispiel:
Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 93 und p = 0.25
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .
Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 93 und p = 0.25 einsetzen muss:
Erwartungswert E(X) = n ⋅ p = 93 ⋅ 0.25 = 23.25
Standardabweichung S(X) = = = ≈ 4.18
