Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,2. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 70% 21 mal oder öfters in den grünen Bereich zu kommen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 110 | 0.3684 |
| 111 | 0.3509 |
| 112 | 0.3338 |
| 113 | 0.3172 |
| 114 | 0.3011 |
| 115 | 0.2854 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.2 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 20% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 105 Versuchen auch ungefähr 21 (≈0.2⋅105) Treffer auftreten.
Wir berechnen also mit unserem ersten n=105:
≈ 0.4611
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=115 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 115 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.
Binomialverteilung X>=k
Beispiel:
Ein Würfel wird 77 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 8 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)
(TI-Befehl: 1-binomcdf(77,,7))
Binomialvert. mit variablem p (diskret)
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 90% unter den 28 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9981 | |
| 0.9685 | |
| 0.8738 | |
| ... | ... |
Die Zufallsvariable X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.
Es muss gelten: = 0.9 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 90% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 3 sein.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 69 Ausspielungen nicht öfters als 23 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.22 | 0.9897 |
| 0.23 | 0.9824 |
| 0.24 | 0.9713 |
| 0.25 | 0.9554 |
| 0.26 | 0.9335 |
| 0.27 | 0.9045 |
| 0.28 | 0.868 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(69,X,23) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.27 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialverteilung X>=k
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,55. Wie groß ist die Wahrscheinlichkeit bei 23 Versuchen mindestens 11 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)
(TI-Befehl: 1-binomcdf(23,0.55,10))
Binomialvert. Abstand vom Erwartungswert
Beispiel:
Ein Basketballspieler hat eine Trefferquote von p=75%. Wie groß ist die Wahrscheinlichkeit dass er bei 42 Versuchen nicht mehr als 20% von seinem Erwartungswert abweicht?
Den Erwartungswert berechnet man als E=n⋅p=42⋅0.75 = 31.5
Die 20% Abweichung wären dann zwischen 80% von 31.5, also 0.8⋅ 31.5 = 25.2 und 120% von 31.5, also 1.2⋅ 31.5 = 37.8
Da die Trefferzahl ja nicht weiter von 31.5 entfernt sein darf als 25.2 bzw. 37.8, muss sie also zwischen 26 und 37 liegen.
=
(TI-Befehl: binomcdf(42,0.75,37) - binomcdf(42,0.75,25))
