Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 82% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 70% Wahrscheinlichkeit in mindestens 3 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 17 | 0.3867 |
| 18 | 0.3462 |
| 19 | 0.309 |
| 20 | 0.2748 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.18 und variablem n.
Es muss gelten: ≥ 0.7
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.7 |+ - 0.7
0.3 ≥ oder ≤ 0.3
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 18% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 17 Versuchen auch ungefähr 3 (≈0.18⋅17) Treffer auftreten.
Wir berechnen also mit unserem ersten n=17:
≈ 0.3867
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=20 die gesuchte Wahrscheinlichkeit unter 0.3 ist.
n muss also mindestens 20 sein, damit ≤ 0.3 oder eben ≥ 0.7 gilt.
Binomialverteilung X ∈ [l;k]
Beispiel:
Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 95 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 20, aber weniger als 32 Fragen richtig beantwortet hat?
=
(TI-Befehl: binomcdf(95,0.25,31) - binomcdf(95,0.25,19))
Binomialvert. mit variablem p (diskret)
Beispiel:
Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 2 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 120 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 70%-iger Wahrscheinlichkiet mindestens 16 mal am Tag eines ihrer eigenen 2 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?
| p | P(X≥16)=1-P(X≤15) |
|---|---|
| ... | ... |
| 0.9994 | |
| 0.9951 | |
| 0.9782 | |
| 0.9374 | |
| 0.8665 | |
| 0.7692 | |
| 0.6563 | |
| ... | ... |
Die Zufallsvariable X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=120 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.7 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 16 Treffer bei 120 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 70% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens
13 sein.
Also wären noch 11 zusätzliche Optionen (also weitere Bilder) zulässig.
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 98 Ausspielungen nicht öfters als 62 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.52 | 0.9945 |
| 0.53 | 0.9906 |
| 0.54 | 0.9843 |
| 0.55 | 0.9747 |
| 0.56 | 0.9605 |
| 0.57 | 0.9404 |
| 0.58 | 0.9131 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(98,X,62) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.57 die gesuchte Wahrscheinlichkeit über 0.9 ist.
kumulierte Binomialverteilung
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,17 entsteht. Es wird eine Stichprobe der Menge 43 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon nicht mehr als 8 defekte Chips enthalten sind.
(Bitte auf 4 Stellen nach dem Komma runden)
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=43 und p=0.17.
= + + +... + = 0.69739983388058 ≈ 0.6974(TI-Befehl: binomcdf(43,0.17,8))
Binomialvert. Abstand vom Erwartungswert
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,5. Wie groß ist die Wahrscheinlichkeit bei 79 Versuchen, dass die Anzahl der Treffer im grünen Bereich nicht mehr als 20% vom Erwartungswert abweicht?
Den Erwartungswert berechnet man als E=n⋅p=79⋅0.5 = 39.5
Die 20% Abweichung wären dann zwischen 80% von 39.5, also 0.8⋅ 39.5 = 31.6 und 120% von 39.5, also 1.2⋅ 39.5 = 47.4
Da die Trefferzahl ja nicht weiter von 39.5 entfernt sein darf als 31.6 bzw. 47.4, muss sie also zwischen 32 und 47 liegen.
=
(TI-Befehl: binomcdf(79,0.5,47) - binomcdf(79,0.5,31))
