Aufgabenbeispiele von Wiederholung aus 9/10

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85.
Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 20 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
230.692
240.4951
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.

Es muss gelten: P0.85n (X20) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei 20 0.85 ≈ 24 Versuchen auch ungefähr 20 (≈0.85⋅24) Treffer auftreten.

Wir berechnen also mit unserem ersten n=24:
P0.85n (X20) ≈ 0.4951 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=23 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialverteilung X>=k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von p=0,78. Wie groß ist die Wahrscheinlichkeit dass er von 31 Versuchen mindestens 24 trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

...
21
22
23
24
25
26
...

P0.7831 (X24) = 1 - P0.7831 (X23) = 0.6298
(TI-Befehl: 1-binomcdf(31,0.78,23))

Binomialvert. mit variablem p (diskret)

Beispiel:

Ein neuer Multiple Choice Test mit 17 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 3 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 25% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤3)
......
1 5 0.5489
1 6 0.6887
1 7 0.7829
......

Die Zufallsvariable X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=17 und unbekanntem Parameter p.

Es muss gelten: Pp17 (X3) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp17 (X3) ('höchstens 3 Treffer bei 17 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 17 . Mit diesem p wäre ja 3= 3 17 ⋅17 der Erwartungswert und somit Pp17 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 17 mit 1 3 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 5 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 7 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 7 sein.

Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 80 Ausspielungen nicht öfters als 48 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?

Lösung einblenden
pP(X≤k)
......
0.480.9882
0.490.9815
0.50.9717
0.510.9579
0.520.9392
0.530.9146
0.540.8831
......

Es muss gelten: Pp80 (X48) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(80,X,48) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.53 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialverteilung X>=k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 37 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so 11 oder gar noch mehr Fragen richtig beantwortet hat?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

...
8
9
10
11
12
13
...

P0.2537 (X11) = 1 - P0.2537 (X10) = 0.3091
(TI-Befehl: 1-binomcdf(37,0.25,10))

Erwartungswert, Standardabweichung best.

Beispiel:

Eine Zufallsgröße ist binomialverteilt mit den Parametern n = 33 und p = 0.75
Bestimme den Erwartungswert μ und die Standardabweichung σ von X .

Lösung einblenden

Für Erwartungswert und Standardabweichung bei der Binomialverteilung gibt es ja einfache Formeln, in die man einfach n = 33 und p = 0.75 einsetzen muss:

Erwartungswert E(X) = n ⋅ p = 33 ⋅ 0.75 = 24.75

Standardabweichung S(X) = n ⋅ p ⋅ (1-p) = 33 ⋅ 0.75 ⋅ 0.25 = 6.1875 2.49