Aufgabenbeispiele von Wiederholung aus 9/10
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
• Das Spiel mit dem Glücksrad muss fair sein
• Der Einsatz soll 7€ betragen
• Der minimale Auszahlungsbetrag soll 3€ sein
• Der maximale Auszahlungsbetrag soll soll 25€ sein
• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 3 | 25 | ||
Y Gewinn (Ausz. - Einsatz) | -4 | 18 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 3 | 25 | ||
Y Gewinn (Ausz. - Einsatz) | -4 | 18 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 3 | 25 | ||
Y Gewinn (Ausz. - Einsatz) | -4 | 18 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 3 | 5 | 9 | 25 |
Y Gewinn (Ausz. - Einsatz) | -4 | -2 | 2 | 18 |
P(X) = P(Y) | ||||
Winkel | 90 | 125 | 125 | 20 |
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -4⋅ + -2⋅ + 2⋅ + 18⋅
=
=
=
=
Erwartungswerte
Beispiel:
Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 18€, bei einer 5 bekommt er 24€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 4€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist?
Die Zufallsgröße X beschreibt den Auszahlungsbetrag.
Erwartungswert der Zufallsgröße X
Ereignis | 1-3 | 4 | 5 | 6 |
Zufallsgröße xi | 4 | 12 | 24 | 18 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 4⋅ + 12⋅ + 24⋅ + 18⋅
=
=