Aufgabenbeispiele von Pfadregel (Wdh. aus 7/8)
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 1 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine Primzahl zu würfeln?
Da ja ausschließlich nach 'prim' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'prim' und 'nicht prim'
Einzel-Wahrscheinlichkeiten :"prim": ; "nicht prim": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal prim' alle Möglichkeiten enthalten, außer eben 2 mal 'prim'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'prim')=1- =
Ereignis | P |
---|---|
prim -> prim | |
prim -> nicht prim | |
nicht prim -> prim | |
nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: prim: ; nicht prim: ;
Die relevanten Pfade sind:
'prim'-'nicht prim' (P=)
'nicht prim'-'prim' (P=)
'nicht prim'-'nicht prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =