Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt hat man für 9€ 5 Versuche, einen Ball in einen Eimer zu werden. Dabei springt der Ball aber mit einer Wahrscheinlichkeit von 84% wieder raus. Bleibt er aber drin, bekommt man einen Euro. Als Riskovariante kann man das Spiel auch so spielen, dass man bei einem Treffer nichts bekommt, bei zwei jedoch gleich 4€, bei drei Treffern sogar 9€, bei 4 Treffern 16 € und bei 5 Treffern volle 25€. Berechne den Erwartungswert des Gewinns der Risikovariante um diesen mit dem des normalen Spiels zu vergleichen.
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-1
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.16.
= + = 0.8165090304 ≈ 0.8165(TI-Befehl: binomcdf(5,0.16,1))
Trefferzahl: 2
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.16.
= =0.151732224≈ 0.1517(TI-Befehl: binompdf(5,0.16,2))
Trefferzahl: 3
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.16.
= =0.028901376≈ 0.0289(TI-Befehl: binompdf(5,0.16,3))
Trefferzahl: 4
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.16.
= =0.002752512≈ 0.0028(TI-Befehl: binompdf(5,0.16,4))
Trefferzahl: 5
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.16.
= =0.0001048576≈ 0.0001(TI-Befehl: binompdf(5,0.16,5))
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 0-1 | 2 | 3 | 4 | 5 |
Zufallsgröße xi | 0 | 4 | 9 | 16 | 25 |
Zufallsgröße yi (Gewinn) | -9 | -5 | 0 | 7 | 16 |
P(X=xi) | 0.8165 | 0.1517 | 0.0289 | 0.0028 | 0.0001 |
xi ⋅ P(X=xi) | |||||
yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.8165 + 4⋅0.1517 + 9⋅0.0289 + 16⋅0.0028 + 25⋅0.0001
≈ 0.91
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=0.91 - 9 = -8.09 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -9⋅0.8165 + -5⋅0.1517 + 0⋅0.0289 + 7⋅0.0028 + 16⋅0.0001
≈ -8.09
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
Blume -> Blume | |
Blume -> Raute | |
Blume -> Stein | |
Blume -> Krone | |
Raute -> Blume | |
Raute -> Raute | |
Raute -> Stein | |
Raute -> Krone | |
Stein -> Blume | |
Stein -> Raute | |
Stein -> Stein | |
Stein -> Krone | |
Krone -> Blume | |
Krone -> Raute | |
Krone -> Stein | |
Krone -> Krone |
Die Wahrscheinlichkeit für '2 gleiche' ist:
P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= + + =
Die Wahrscheinlichkeit für '1 Krone' ist:
P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= + + + + + =
Die Wahrscheinlichkeit für '2 Kronen' ist:
P('Krone'-'Krone')
=
Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.
Erwartungswert der Zufallsgröße X
Ereignis | 2 gleiche | 1 Krone | 2 Kronen |
Zufallsgröße xi | 1 | 4 | 40 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 4⋅ + 40⋅
=
=
=
≈ 1.8