Aufgabenbeispiele von komplexere Erwartungswerte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Erwartungswerte bei Binomialverteilungen

Beispiel:

Ein Spieler würfelt mit drei Würfeln. Bei drei Sechsern erhält er 150€, bei 2 Sechsern bekommt er noch 20€, bei einer Sechs 2€. Ist gar keine Sechs dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Das Ergebnis bitte auf 2 Stellen runden!)

Lösung einblenden

Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:

Trefferzahl: 0

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=0) = ( 3 0 ) ( 1 6 )0 ( 5 6 )3 =0.5787037037037≈ 0.5787
(TI-Befehl: binompdf(3,1/6,0))

Trefferzahl: 1

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=1) = ( 3 1 ) ( 1 6 )1 ( 5 6 )2 =0.34722222222222≈ 0.3472
(TI-Befehl: binompdf(3,1/6,1))

Trefferzahl: 2

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=2) = ( 3 2 ) ( 1 6 )2 ( 5 6 )1 =0.069444444444444≈ 0.0694
(TI-Befehl: binompdf(3,1/6,2))

Trefferzahl: 3

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p= 1 6 .

P 1 6 3 (X=3) = ( 3 3 ) ( 1 6 )3 ( 5 6 )0 =0.0046296296296296≈ 0.0046
(TI-Befehl: binompdf(3,1/6,3))

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 2 20 150
P(X=xi) 0.5787 0.3472 0.0694 0.0046
xi ⋅ P(X=xi) 0 0.6944 1.388 0.69

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅0.5787 + 2⋅0.3472 + 20⋅0.0694 + 150⋅0.0046

2.77

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 15 Mädchen und 9 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 455 2024
Mädchen -> Mädchen -> Jungs 315 2024
Mädchen -> Jungs -> Mädchen 315 2024
Mädchen -> Jungs -> Jungs 45 506
Jungs -> Mädchen -> Mädchen 315 2024
Jungs -> Mädchen -> Jungs 45 506
Jungs -> Jungs -> Mädchen 45 506
Jungs -> Jungs -> Jungs 21 506

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 21 506

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 45 506 + 45 506 + 45 506 = 135 506

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 315 2024 + 315 2024 + 315 2024 = 945 2024

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 455 2024

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 21 506 135 506 945 2024 455 2024
xi ⋅ P(X=xi) 0 135 506 945 1012 1365 2024

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 21 506 + 1⋅ 135 506 + 2⋅ 945 2024 + 3⋅ 455 2024

= 0+ 135 506 + 945 1012 + 1365 2024
= 0 2024 + 540 2024 + 1890 2024 + 1365 2024
= 3795 2024
= 15 8

1.88