Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt wird Torwandschießen angeboten. Dabei darf man für 7€ Einsatz 6 Schüsse abgeben. Trifft man alle 6, so erhält man 5000€. Bei 5 Treffern bekommt man 200€, und bei 4 Treffern 20€. Trifft man weniger als 4 mal, so erhält man nichts. Mit welchem durchschnittlichen Gewinn pro Spiel kann ein Spieler rechnen, wenn man von einer Trefferwahrscheinlichkeit von p=0,27 ausgehen kann?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-3
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.27.
= + + + = 0.95084702191 ≈ 0.9508(TI-Befehl: binomcdf(6,0.27,3))
Trefferzahl: 4
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.27.
= =0.042480736335≈ 0.0425(TI-Befehl: binompdf(6,0.27,4))
Trefferzahl: 5
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.27.
= =0.006284821266≈ 0.0063(TI-Befehl: binompdf(6,0.27,5))
Trefferzahl: 6
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.27.
= =0.000387420489≈ 0.0004(TI-Befehl: binompdf(6,0.27,6))
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | 0-3 | 4 | 5 | 6 |
| Zufallsgröße xi | 0 | 20 | 200 | 5000 |
| Zufallsgröße yi (Gewinn) | -7 | 13 | 193 | 4993 |
| P(X=xi) | 0.9508 | 0.0425 | 0.0063 | 0.0004 |
| xi ⋅ P(X=xi) | ||||
| yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.9508 + 20⋅0.0425 + 200⋅0.0063 + 5000⋅0.0004
≈ 4.11
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=4.11 - 7 = -2.89 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -7⋅0.9508 + 13⋅0.0425 + 193⋅0.0063 + 4993⋅0.0004
≈ -2.89
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Ein Spieler darf aus einer Urne mit 7 blauen und 3 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 80€, bei 2 blauen bekommt er noch 20€, bei einer 10€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> rot | |
| blau -> rot -> blau | |
| blau -> rot -> rot | |
| rot -> blau -> blau | |
| rot -> blau -> rot | |
| rot -> rot -> blau | |
| rot -> rot -> rot |
Die Wahrscheinlichkeit für 0 mal 'blau' ist:
Die Wahrscheinlichkeit für 1 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'blau' ist:
Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 10 | 20 | 80 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 80⋅
=
=
=
≈ 35.58
