Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Ein Bürobelieferungs-Firma liefert Toner aus, bei denen dummerweise 30% defekt sind. Die defekten Toner dürfen die Empfänger in Retoure-Kartons zurückschicken, in die maximal 4 Stück reinpassen. Ein Retoure-Karton kostet die Firma 5€ Porto. Mit welchen Portogebühren muss die Firma bei einer Schule, die 20 Toner abgenommen hat, durchschnittlich rechnen?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.3.
= =0.00079792266297612≈ 0.0008(TI-Befehl: binompdf(20,0.3,0))
Trefferzahl: 1-4
= - = 0.2367
(TI-Befehl: binomcdf(20,0.3,4) - binomcdf(20,0.3,0))Trefferzahl: 5-8
= - = 0.6492
(TI-Befehl: binomcdf(20,0.3,8) - binomcdf(20,0.3,4))Trefferzahl: 9-12
= - = 0.112
(TI-Befehl: binomcdf(20,0.3,12) - binomcdf(20,0.3,8))Trefferzahl: 13-16
= - = 0.0013
(TI-Befehl: binomcdf(20,0.3,16) - binomcdf(20,0.3,12))Trefferzahl: 17-20
= - = 0
(TI-Befehl: binomcdf(20,0.3,20) - binomcdf(20,0.3,16))Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1-4 | 5-8 | 9-12 | 13-16 | 17-20 |
| Zufallsgröße xi | 0 | 5 | 10 | 15 | 20 | 25 |
| P(X=xi) | 0.0008 | 0.2367 | 0.6492 | 0.112 | 0.0013 | 0 |
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.0008 + 5⋅0.2367 + 10⋅0.6492 + 15⋅0.112 + 20⋅0.0013 + 25⋅0
≈ 9.38
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Ein Spieler darf aus einer Urne mit 10 blauen und 5 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 85€, bei 2 blauen bekommt er noch 13€, bei einer 5€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> rot | |
| blau -> rot -> blau | |
| blau -> rot -> rot | |
| rot -> blau -> blau | |
| rot -> blau -> rot | |
| rot -> rot -> blau | |
| rot -> rot -> rot |
Die Wahrscheinlichkeit für 0 mal 'blau' ist:
Die Wahrscheinlichkeit für 1 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'blau' ist:
Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 5 | 13 | 85 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 5⋅ + 13⋅ + 85⋅
=
=
=
≈ 29.95
