Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt wird Torwandschießen angeboten. Dabei darf man für 17€ Einsatz 6 Schüsse abgeben. Trifft man alle 6, so erhält man 5000€. Bei 5 Treffern bekommt man 300€, und bei 4 Treffern 30€. Trifft man weniger als 4 mal, so erhält man nichts. Mit welchem durchschnittlichen Gewinn pro Spiel kann ein Spieler rechnen, wenn man von einer Trefferwahrscheinlichkeit von p=0,34 ausgehen kann?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-3
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.34.
= + + + = 0.89314657344 ≈ 0.8931(TI-Befehl: binomcdf(6,0.34,3))
Trefferzahl: 4
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.34.
= =0.08731619424≈ 0.0873(TI-Befehl: binompdf(6,0.34,4))
Trefferzahl: 5
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.34.
= =0.017992427904≈ 0.018(TI-Befehl: binompdf(6,0.34,5))
Trefferzahl: 6
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.34.
= =0.001544804416≈ 0.0015(TI-Befehl: binompdf(6,0.34,6))
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | 0-3 | 4 | 5 | 6 |
| Zufallsgröße xi | 0 | 30 | 300 | 5000 |
| Zufallsgröße yi (Gewinn) | -17 | 13 | 283 | 4983 |
| P(X=xi) | 0.8931 | 0.0873 | 0.018 | 0.0015 |
| xi ⋅ P(X=xi) | ||||
| yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.8931 + 30⋅0.0873 + 300⋅0.018 + 5000⋅0.0015
≈ 15.52
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=15.52 - 17 = -1.48 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -17⋅0.8931 + 13⋅0.0873 + 283⋅0.018 + 4983⋅0.0015
≈ -1.48
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 10 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As -> As | |
| As -> As -> andereKarte | |
| As -> andereKarte -> As | |
| As -> andereKarte -> andereKarte | |
| andereKarte -> As -> As | |
| andereKarte -> As -> andereKarte | |
| andereKarte -> andereKarte -> As | |
| andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 10 | 20 | 30 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
=
=
≈ 8.57
