Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt wird Torwandschießen angeboten. Dabei darf man für 8€ Einsatz 6 Schüsse abgeben. Trifft man alle 6, so erhält man 1000€. Bei 5 Treffern bekommt man 500€, und bei 4 Treffern 30€. Trifft man weniger als 4 mal, so erhält man nichts. Mit welchem durchschnittlichen Gewinn pro Spiel kann ein Spieler rechnen, wenn man von einer Trefferwahrscheinlichkeit von p=0,32 ausgehen kann?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-3
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.32.
= + + + = 0.91250681856 ≈ 0.9125(TI-Befehl: binomcdf(6,0.32,3))
Trefferzahl: 4
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.32.
= =0.07272923136≈ 0.0727(TI-Befehl: binompdf(6,0.32,4))
Trefferzahl: 5
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.32.
= =0.013690208256≈ 0.0137(TI-Befehl: binompdf(6,0.32,5))
Trefferzahl: 6
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.32.
= =0.001073741824≈ 0.0011(TI-Befehl: binompdf(6,0.32,6))
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | 0-3 | 4 | 5 | 6 |
| Zufallsgröße xi | 0 | 30 | 500 | 1000 |
| Zufallsgröße yi (Gewinn) | -8 | 22 | 492 | 992 |
| P(X=xi) | 0.9125 | 0.0727 | 0.0137 | 0.0011 |
| xi ⋅ P(X=xi) | ||||
| yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.9125 + 30⋅0.0727 + 500⋅0.0137 + 1000⋅0.0011
≈ 10.13
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=10.13 - 8 = 2.13 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -8⋅0.9125 + 22⋅0.0727 + 492⋅0.0137 + 992⋅0.0011
≈ 2.13
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| Blume -> Blume | |
| Blume -> Raute | |
| Blume -> Stein | |
| Blume -> Krone | |
| Raute -> Blume | |
| Raute -> Raute | |
| Raute -> Stein | |
| Raute -> Krone | |
| Stein -> Blume | |
| Stein -> Raute | |
| Stein -> Stein | |
| Stein -> Krone | |
| Krone -> Blume | |
| Krone -> Raute | |
| Krone -> Stein | |
| Krone -> Krone |
Die Wahrscheinlichkeit für '2 gleiche' ist:
P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= + + =
Die Wahrscheinlichkeit für '1 Krone' ist:
P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= + + + + + =
Die Wahrscheinlichkeit für '2 Kronen' ist:
P('Krone'-'Krone')
=
Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.
Erwartungswert der Zufallsgröße X
| Ereignis | 2 gleiche | 1 Krone | 2 Kronen |
| Zufallsgröße xi | 4 | 8 | 20 |
| P(X=xi) | |||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 4⋅ + 8⋅ + 20⋅
=
=
=
=
≈ 3.13
