Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt wird Torwandschießen angeboten. Dabei darf man für 17€ Einsatz 6 Schüsse abgeben. Trifft man alle 6, so erhält man 5000€. Bei 5 Treffern bekommt man 400€, und bei 4 Treffern 30€. Trifft man weniger als 4 mal, so erhält man nichts. Mit welchem durchschnittlichen Gewinn pro Spiel kann ein Spieler rechnen, wenn man von einer Trefferwahrscheinlichkeit von p=0,26 ausgehen kann?
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-3
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.26.
= + + + = 0.95687974464 ≈ 0.9569(TI-Befehl: binomcdf(6,0.26,3))
Trefferzahl: 4
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.26.
= =0.03753600864≈ 0.0375(TI-Befehl: binompdf(6,0.26,4))
Trefferzahl: 5
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.26.
= =0.005275330944≈ 0.0053(TI-Befehl: binompdf(6,0.26,5))
Trefferzahl: 6
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=6 und p=0.26.
= =0.000308915776≈ 0.0003(TI-Befehl: binompdf(6,0.26,6))
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 0-3 | 4 | 5 | 6 |
Zufallsgröße xi | 0 | 30 | 400 | 5000 |
Zufallsgröße yi (Gewinn) | -17 | 13 | 383 | 4983 |
P(X=xi) | 0.9569 | 0.0375 | 0.0053 | 0.0003 |
xi ⋅ P(X=xi) | ||||
yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.9569 + 30⋅0.0375 + 400⋅0.0053 + 5000⋅0.0003
≈ 4.75
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=4.75 - 17 = -12.25 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -17⋅0.9569 + 13⋅0.0375 + 383⋅0.0053 + 4983⋅0.0003
≈ -12.26
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Ein Spieler darf aus einer Urne mit 8 blauen und 4 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 64€, bei 2 blauen bekommt er noch 16€, bei einer 8€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
blau -> blau -> blau | |
blau -> blau -> rot | |
blau -> rot -> blau | |
blau -> rot -> rot | |
rot -> blau -> blau | |
rot -> blau -> rot | |
rot -> rot -> blau | |
rot -> rot -> rot |
Die Wahrscheinlichkeit für 0 mal 'blau' ist:
Die Wahrscheinlichkeit für 1 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'blau' ist:
Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 8 | 16 | 64 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 8⋅ + 16⋅ + 64⋅
=
=
=
=
≈ 26.18