Aufgabenbeispiele von komplexere Erwartungswerte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Erwartungswerte bei Binomialverteilungen

Beispiel:

Ein Bürobelieferungs-Firma liefert Toner aus, bei denen dummerweise 30% defekt sind. Die defekten Toner dürfen die Empfänger in Retoure-Kartons zurückschicken, in die maximal 4 Stück reinpassen. Ein Retoure-Karton kostet die Firma 5€ Porto. Mit welchen Portogebühren muss die Firma bei einer Schule, die 20 Toner abgenommen hat, durchschnittlich rechnen?
(Das Ergebnis bitte auf 2 Stellen runden!)

Lösung einblenden

Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:

Trefferzahl: 0

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und p=0.3.

P0.320 (X=0) = ( 20 0 ) 0.30 0.720 =0.00079792266297612≈ 0.0008
(TI-Befehl: binompdf(20,0.3,0))

Trefferzahl: 1-4

P0.320 (1X4) = P0.320 (X4) - P0.320 (X0) = 0.2367

(TI-Befehl: binomcdf(20,0.3,4) - binomcdf(20,0.3,0))

Trefferzahl: 5-8

P0.320 (5X8) = P0.320 (X8) - P0.320 (X4) = 0.6492

(TI-Befehl: binomcdf(20,0.3,8) - binomcdf(20,0.3,4))

Trefferzahl: 9-12

P0.320 (9X12) = P0.320 (X12) - P0.320 (X8) = 0.112

(TI-Befehl: binomcdf(20,0.3,12) - binomcdf(20,0.3,8))

Trefferzahl: 13-16

P0.320 (13X16) = P0.320 (X16) - P0.320 (X12) = 0.0013

(TI-Befehl: binomcdf(20,0.3,16) - binomcdf(20,0.3,12))

Trefferzahl: 17-20

P0.320 (X17) = P0.320 (X20) - P0.320 (X16) = 0

(TI-Befehl: binomcdf(20,0.3,20) - binomcdf(20,0.3,16))

Erwartungswert der Zufallsgröße X

Ereignis 0 1-4 5-8 9-12 13-16 17-20
Zufallsgröße xi 0 5 10 15 20 25
P(X=xi) 0.0008 0.2367 0.6492 0.112 0.0013 0
xi ⋅ P(X=xi) 0 1.1835 6.492 1.68 0.025999999999999 0

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅0.0008 + 5⋅0.2367 + 10⋅0.6492 + 15⋅0.112 + 20⋅0.0013 + 25⋅0

9.38

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 8 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 55
As -> As -> andereKarte 4 55
As -> andereKarte -> As 4 55
As -> andereKarte -> andereKarte 28 165
andereKarte -> As -> As 4 55
andereKarte -> As -> andereKarte 28 165
andereKarte -> andereKarte -> As 28 165
andereKarte -> andereKarte -> andereKarte 14 55

Die Wahrscheinlichkeit für 0 mal 'As' ist: 14 55

Die Wahrscheinlichkeit für 1 mal 'As' ist: 28 165 + 28 165 + 28 165 = 28 55

Die Wahrscheinlichkeit für 2 mal 'As' ist: 4 55 + 4 55 + 4 55 = 12 55

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 55

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 14 55 28 55 12 55 1 55
xi ⋅ P(X=xi) 0 56 11 48 11 6 11

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 14 55 + 10⋅ 28 55 + 20⋅ 12 55 + 30⋅ 1 55

= 0+ 56 11 + 48 11 + 6 11
= 0 11 + 56 11 + 48 11 + 6 11
= 110 11
= 10