Aufgabenbeispiele von komplexere Erwartungswerte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Erwartungswerte bei Binomialverteilungen
Beispiel:
Auf einem Jahrmarkt hat man für 7€ 5 Versuche, einen Ball in einen Eimer zu werden. Dabei springt der Ball aber mit einer Wahrscheinlichkeit von 75% wieder raus. Bleibt er aber drin, bekommt man einen Euro. Als Riskovariante kann man das Spiel auch so spielen, dass man bei einem Treffer nichts bekommt, bei zwei jedoch gleich 4€, bei drei Treffern sogar 9€, bei 4 Treffern 16 € und bei 5 Treffern volle 25€. Berechne den Erwartungswert des Gewinns der Risikovariante um diesen mit dem des normalen Spiels zu vergleichen.
(Das Ergebnis bitte auf 2 Stellen runden!)
Zuerst müssen wir die Wahrscheinlichkeiten für die einzelnen 'Trefferzahlen' bestimmen:
Trefferzahl: 0-1
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.25.
= + = 0.6328125 ≈ 0.6328(TI-Befehl: binomcdf(5,0.25,1))
Trefferzahl: 2
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.25.
= =0.263671875≈ 0.2637(TI-Befehl: binompdf(5,0.25,2))
Trefferzahl: 3
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.25.
= =0.087890625≈ 0.0879(TI-Befehl: binompdf(5,0.25,3))
Trefferzahl: 4
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.25.
= =0.0146484375≈ 0.0146(TI-Befehl: binompdf(5,0.25,4))
Trefferzahl: 5
Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.25.
= =0.0009765625≈ 0.001(TI-Befehl: binompdf(5,0.25,5))
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | 0-1 | 2 | 3 | 4 | 5 |
| Zufallsgröße xi | 0 | 4 | 9 | 16 | 25 |
| Zufallsgröße yi (Gewinn) | -7 | -3 | 2 | 9 | 18 |
| P(X=xi) | 0.6328 | 0.2637 | 0.0879 | 0.0146 | 0.001 |
| xi ⋅ P(X=xi) | |||||
| yi ⋅ P(Y=yi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅0.6328 + 4⋅0.2637 + 9⋅0.0879 + 16⋅0.0146 + 25⋅0.001
≈ 2.1
Das ist jetzt allerdings der Erwartungswert der Auszahlung, von dem man noch den Einsatz abziehen muss, so dass sich als Erwartungswert des Gewinns E(x)=2.1 - 7 = -4.9 ergibt.
Oder man rechnet gleich den Erwartungswert der einzelnen Gewinne (X2) aus:
E(Y)= -7⋅0.6328 + -3⋅0.2637 + 2⋅0.0879 + 9⋅0.0146 + 18⋅0.001
≈ -4.9
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 8 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As -> As | |
| As -> As -> andereKarte | |
| As -> andereKarte -> As | |
| As -> andereKarte -> andereKarte | |
| andereKarte -> As -> As | |
| andereKarte -> As -> andereKarte | |
| andereKarte -> andereKarte -> As | |
| andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 10 | 20 | 30 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
=
=
