Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
p gesucht (n-te Wurzel)
Beispiel:
An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,4. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)
P=0.4 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.
Es gilt also 0.4=p2
=>p= ≈ 0.6325
gesuchtes p (ohne zurücklegen)
Beispiel:
In einem Kartenstapel mit 22 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?
Anzahl der Joker im Kartenstapel | P('höchstens einen Joker') |
---|---|
... | ... |
3 | 1-⋅=1-≈0.987 |
4 | 1-⋅=1-≈0.974 |
5 | 1-⋅=1-≈0.9567 |
6 | 1-⋅=1-≈0.9351 |
7 | 1-⋅=1-≈0.9091 |
8 | 1-⋅=1-≈0.8788 |
9 | 1-⋅=1-≈0.8442 |
10 | 1-⋅=1-≈0.8052 |
11 | 1-⋅=1-≈0.7619 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.
Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Joker im Kartenstapel=3 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/22*(x-1)/21)
In dieser Tabelle erkennen wir, dass letztmals bei 10 als 'Anzahl der Joker im Kartenstapel' die gesuchte
Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 10 sein.