Aufgabenbeispiele von Ebenen bestimmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
parallele Ebene durch Punkt
Beispiel:
Bestimme eine Koordinatengleichung der Ebene F, die parallel zur Ebene E: ist und die den Punkt P enthält.
Jede zu E parallele Ebene hat den gleichen Normalenvektor = und damit die Form E: .
Da der Punkt P auf der gesuchten Ebene liegen soll, können wir diesen einfach einsetzen, um das d zu bestimmen.
Die gesuchte Ebene hat somit die Gleichung F: .
Punktprobe in Ebene mit Parameter
Beispiel:
Für welches a liegt der Punkt P auf der Ebene E: ?
Wir setzen einfach mal den Punkt P in E ein:
|
-4a = 20 | :(-4)
a = -5
Ebene aus orth. Geraden durch Punkt
Beispiel:
Bestimme eine Koordinatengleichung der Ebene E, die orthogonal zur Geraden g: ist und die den Punkt P enthält.

Wenn E orthogonal zur Geraden g ist, so kann man den Richtungsverktor von g als Normalenvektor = der gesuchten Ebene verwenden. Dadurch ergibt sich für die Koordinatengleichung der Ebene E: .
Da der Punkt P auf der gesuchten Ebene liegen soll, können wir diesen einfach einsetzen, um das d zu bestimmen.
Die gesuchte Ebene hat somit die Gleichung F: .
spezielle Ebenen
Beispiel:
Welche besondere Lage hat die Ebene E: ?
Wenn man die Spurpunkte der Ebene sucht, also auch x2 und x3 gleich 0 setzt, so erkennt man, dass die Ebene keinen Schnittpunkt mit der x1-Achse hat.
Also ist die Ebene parallel zur x1-Achse
spezielle Ebenen aufstellen
Beispiel:
Bestimme die Koordinatengleichung der x2-x3-Ebene.
Da der Normalenvektor der gesuchten Ebene senkrecht auf der Ebene steht, muss dieser = oder eben ein Vielfaches davon sein.
Die Koordinatengleichung hat also die Form . Durch Einsetzen des Ursprungs O(0|0|0) in diese Gleichung erhält man
d = =0
also:
spezielle Ebene in Parameterform
Beispiel:
Welche besondere Lage hat die Ebene E: ?

1. Weg:
Der 1. Spannvektor ist ja und zeigt damit genau in gleiche Richtung wie die x2-Achse.
Damit ist die Ebene - unabhängig vom anderen Spannvektor - parallel zur x2-Achse.
2. Weg:
Da der 1. Spannvektor an zwei Stellen den Wert 0 hat, muss der Normalenvektor (der ja orthogonal zu den beiden Spannvektoren ist) an der
x2-Koordinate den Wert 0 haben, denn
⋅ =0 .
Also E:
Wenn man jetzt aber die Spurpunkte der Ebene sucht, also auch x3 und x1 gleich 0 setzt, so erkennt man, dass die Ebene keinen Schnittpunkt mit der x2-Achse hat.
Also ist die Ebene parallel zur x2-Achse
Parameter bestimmen, dass g in E liegt
Beispiel:
Bestimme a und b so, dass die Gerage g: komplett in der Ebene E: liegt.

Wenn die Gerade g in E liegen soll, muss auch der Normalenvektor von E orthogonal zum Richtungsvektor von g sein, also muss gelten:
⋅ = 0
|
1a = 1 | :1
a = 1
Für a = 1 ist also g parallel zu E oder liegt in E.
E hat dann also die Koordinatengleichung E: .
Wenn g in E liegen soll, muss ja jeder Punkt von g in E liegen, also auch der Aufpunkt .
Wir müssen also nur den Aufpunkt in E: einsetzen, um noch das b zu bestimmen.
Mit b = 42 ergibt sich somit als Koordinatengleichung für E: .
Parameter für Lage von 2 Ebenen bestimmen
Beispiel:
Gegeben sind die Ebenen E: und F: . Bestimme a und b so, dass die beiden Ebenen echt parallel sind.

Wenn die beiden Ebenen parallel oder identisch sein sollen, müssen ihre Normalenvektoren vielfache (oder gleich) sein. Es muss also gelten:
= t⋅
Man erkent nun gleich, dass dies nur für t = -2 möglich ist.
Daraus ergibt sich aber in der 3. Zeile: a = -2 ⋅ 41 = -82.
Für a = -82 sind die Ebenen also parallel oder sogar identisch, für F gilt also
F: .
Wenn man nun die Gleichung der Ebene E mit t = -2 durchmultipliziert, so erhält man
E: , d.h. für b = -244 sind die beiden Ebenen identisch.
Genau das wollen wir ja aber gerade nicht, deswegen können wir jeden beliebigen Wert für b ≠ -244, also z.B.: b = -243 setzen.
