Aufgabenbeispiele von Prismen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Volumen eines Prisma

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen des dargestellten, senkrechten Prismas.

Lösung einblenden

Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 5 cm nach oben ist.
Die Fläche der Grundseite berechnet man mit:
A = 1 2 ⋅ Grundseite ⋅ Höhe
also hier:

A = 1 2 ⋅ 12 cm ⋅ 6 cm = 36 cm²

Das wird dann mit der Höhe multipliziert: V = 36 cm² ⋅ 5 cm = 180 cm³

Volumen eines Prisma 2

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 40 m. Berechne das Volumen des Prismas.

Lösung einblenden

Wir berechnen natürlich zuerst den Flächeninhalt der abgebildeten Grundfläche und nutzen hierfür die Flächeninhaltsformel des Dreiecks:

G = 1 2 c ⋅ hc

Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:

hc2 + ( 7 2 )2 = 72 |-( 7 2 )2

hc2 = 72 - ( 7 2 )2 = 72 - 3.52 = 49 - 12.25= 36.75

Daraus ergibt sich:

hc = 36.75 ≈ 6.062

Und daraus ergibt sich wiederum für die Grundfläche G:

G = 1 2 c ⋅ hc = 1 2 ⋅ 7 ⋅ 6.062 ≈ 21.2

Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
G = 3 4 a2 = 3 4 49 ≈ 21.2

Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=40 m multiplizieren:

V = G ⋅ h ≈ 21.2 m² ⋅ 40 m ≈ 848.7 m³

Prismavolumen rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat das Volumen V = 2598.1 cm³, die Höhe h = 40 cm und als Grundfläche das abgebildete regelmäßige Sechseck.
Berechne die rote Strecke x.

Lösung einblenden

Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G = V h 2598.1 40 ≈ 64.95

Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen muss der Flächeninhalt eines dieser 6 kleinen gleichseitigen Dreiecke eben gerade A = 1 6 G ≈ 64.95 6 ≈ 10.83 sein

Jetzt müssen wir uns eine Formel für das gleichseitige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):

Nach dem Satz des Pythagoras gilt:

hc2 + ( x 2 )2 = x2 |-( x 2 )2

hc2 = x2 - ( x 2 )2 = x2 - 1 4 x2 = 3 4 x2

Daraus ergibt sich:

hc = 3 2 a

Und daraus ergibt sich wiederum für die Grundfläche ADreieck:

ADreieck = 1 2 a ⋅ hc = 1 2 ⋅ a ⋅ 3 2 a ≈ 3 4 x2

Hier können wir jetzt die bereits ermittelte Grundfläche ADreieck = 10.83 einsetzen:

10.83 ≈ 3 4 x2 | ⋅4: 3

25 ≈ x2

x ≈ 25 ≈ 5

Für x = 5 cm ist somit die Grundfläche ADreieck ≈ 10.8 cm² und das Volumen des Prismas V ≈ 2598.1 cm³