Aufgabenbeispiele von Vierfeldertafel
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Mengen-Operationen elementar
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge B = {3; 4; 6; 9}. Bestimme
.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge B = {3; 4; 6; 9}.
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge B={3; 4; 6; 9} sind,
also
= {1; 2; 5; 7; 8; 10}
Mengen-Operationen (allg.)
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {3; 4; 6; 7; 9} und B = {1; 2; 3; 6; 7; 9; 10}. Bestimme
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {3; 4; 6; 7; 9} und B = {1; 2; 3; 6; 7; 9; 10}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge B={1; 2; 3; 6; 7; 9; 10} sind,
also
= {4; 5; 8}
Die Menge
also
Mengen-Operationen Anwendungen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Bestimme alle Sektoren, deren Zahl durch 4 teilbar ist und deren Hintergrund eingefärbt ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9} und die Mengen A = {1; 2; 4; 6; 8; 9} und B = {4; 8}.
Die Menge
also
Mengen-Operationen Wahrscheinlichkeit
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ein Glücksrad wie rechts abgebildet wird einmal gedreht. Bestimme die Wahrscheinlichkeit, dass die Zahl des gewählten Sektors durch 4 teilbar ist oder der Hintergrund dieses Sektors eingefärbt ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8} und die Mengen A = {1; 4; 5; 6} und B = {4; 8}.
Die Menge
also
Da alle Elemente aus S gleich wahrscheinlich sind, kann man nun die gesuchte Wahrscheinlichkeit über die Anzahl der Elemente der Mengen bestimmen:
P(
Vierfeldertafel mit Anzahlen
Beispiel:
In der angezeigten Vierfeldertafel sind in jeder Zelle Anzahlen. Vervollständige die Vierfeldertafel.
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H(A ∩ B) + 89 = 114
Somit gilt: H(A ∩ B) = 114 - 89 = 25
25 | 89 | 114 | |
133 | 317 | ||
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H( ∩ B) + 133 = 317
Somit gilt: H( ∩ B) = 317 - 133 = 184
25 | 89 | 114 | |
184 | 133 | 317 | |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
25 + 184 = H(B)
Somit gilt: H(B) = 25 + 184 = 209
25 | 89 | 114 | |
184 | 133 | 317 | |
209 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
89 + 133 = H( )
Somit gilt: H( ) = 89 + 133 = 222
25 | 89 | 114 | |
184 | 133 | 317 | |
209 | 222 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
114 + 317 = H(B + )
Somit gilt: H(B + ) = 114 + 317 = 431
25 | 89 | 114 | |
184 | 133 | 317 | |
209 | 222 | 431 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
Vierfeldertafel mit Wahrscheinlichkeiten
Beispiel:
In der angezeigten Vierfeldertafel stehen in jeder Zelle Wahrscheinlichkeiten. Vervollständige die Vierfeldertafel.
Als erstes tragen wir rechts unten die Summe P(A)+P( ) = P(B)+P( ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass gilt 100%.
0,07 | |||
0,68 | |||
0,25 | 1 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.25 + P( ) = 1
Somit gilt: P( ) = 1 - 0.25 = 0.75
0,07 | |||
0,68 | |||
0,25 | 0,75 | 1 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.07 + P( ∩ B) = 0.25
Somit gilt: P( ∩ B) = 0.25 - 0.07 = 0.18
0,07 | |||
0,18 | 0,68 | ||
0,25 | 0,75 | 1 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
P(A ∩ ) + 0.68 = 0.75
Somit gilt: P(A ∩ ) = 0.75 - 0.68 = 0.07
0,07 | 0,07 | ||
0,18 | 0,68 | ||
0,25 | 0,75 | 1 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.07 + 0.07 = P(A)
Somit gilt: P(A) = 0.07 + 0.07 = 0.14
0,07 | 0,07 | 0,14 | |
0,18 | 0,68 | ||
0,25 | 0,75 | 1 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.18 + 0.68 = P( )
Somit gilt: P( ) = 0.18 + 0.68 = 0.86
0,07 | 0,07 | 0,14 | |
0,18 | 0,68 | 0,86 | |
0,25 | 0,75 | 1 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
VFT Anwend. Häufigkeiten
Beispiel:
Ein Fahrradhändler hat in einem Jahr 1300 Fahrräder verkauft. Davon waren 398 Mountainbikes ohne zusätzlichen Elektroantrieb. Insgesamt wurden 637 E-Bikes verkauft. Von den Rädern, die kein Mountainbike sind, wurden insgesamt (E-Bike und andere zusammen) 730 Stück verkauft. Wie viele Fahrräder wurden verkauft, die weder ein Mountainbike noch ein E-Bike sind?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: E-Bike
: nicht E-Bike, also kein E-Bike
: Mountainbike
: nicht Mountainbike, also kein Mountainbike
Hiermit ergibt sich folgende Vierfeldertafel:
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 637 | ||
(kein E-Bike) | 398 | ||
730 | 1300 |
Diese müssen wir nun vollends ausfüllen:
Rechenweg zum Ausfüllen der Vierfeldertafel einblenden
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H(B) + 730 = 1300
Somit gilt: H(B) = 1300 - 730 = 570
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 637 | ||
(kein E-Bike) | 398 | ||
570 | 730 | 1300 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
H(A ∩ B) + 398 = 570
Somit gilt: H(A ∩ B) = 570 - 398 = 172
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 172 | 637 | |
(kein E-Bike) | 398 | ||
570 | 730 | 1300 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
637 + H( ) = 1300
Somit gilt: H( ) = 1300 - 637 = 663
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 172 | 637 | |
(kein E-Bike) | 398 | 663 | |
570 | 730 | 1300 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
172 + H(A ∩ ) = 637
Somit gilt: H(A ∩ ) = 637 - 172 = 465
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 172 | 465 | 637 |
(kein E-Bike) | 398 | 663 | |
570 | 730 | 1300 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
398 + H( ∩ ) = 663
Somit gilt: H( ∩ ) = 663 - 398 = 265
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 172 | 465 | 637 |
(kein E-Bike) | 398 | 265 | 663 |
570 | 730 | 1300 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
(Mountainbike) |
(kein Mountainbike) | ||
---|---|---|---|
(E-Bike) | 172 | 465 | 637 |
(kein E-Bike) | 398 | 265 | 663 |
570 | 730 | 1300 |
Der gesuchte Wert, Anzahl verkaufter "normaler" Fahrräder, ist also 265.
VFT Anwend. prozentual (leichter)
Beispiel:
Schätzungen zufolge sind 9% der Lehrer Informatiklehrer. Von den anderen Lehrern nutzen 94% das MS-Office. Von den Informatik-Lehrern bevorzugen aber 86% ein anderes Office-Paket wie OpenOffice oder LibreOffice. Wie viel Prozent der Lehrer insgesamt nutzen nach diesen Schätzungen das MS-Office?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: Informatiklehrer
: nicht Informatiklehrer, also andere
: MS-Office
: nicht MS-Office, also anderes Office
Hiermit ergibt sich folgende Vierfeldertafel:
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,09 | ||
(andere) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe + = + = 1 ein, schließlich ist die Wahrscheinlichkeit, dass gilt oder dass gilt 100%.
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,09 | ||
(andere) | 0,91 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "Informatiklehrer" sind es 86%, also
,
die Wahrscheinlichkeit
=
berechnen.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,0774 | 0,09 | |
(andere) | 0,91 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "andere" sind es 94%, also
die Wahrscheinlichkeit
berechnen.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,0774 | 0,09 | |
(andere) | 0,8554 | 0,91 | |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,0126 | 0,0774 | 0,09 |
(andere) | 0,8554 | 0,0546 | 0,91 |
0,868 | 0,132 | 1 |
Der gesuchte Wert, Prozentsatz an MS-Office, ist also 0.868 = 86.8%.
VFT Anwend. prozentual (schwerer)
Beispiel:
Bei einer neuen Viruskrankkeit, geht man davon aus, dass 0,94% der Bevölkerung diese nicht überleben. In einem Land sind 95% der Bevölkerung nicht älter als 80 Jahre. Von denen, die die Viruskrankheit nicht überleben, sind 69,15% über 80 Jahre alt. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Infizierter nicht älter als 80 ist und die Krankheit überlebt?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | |||
(höchstens 80) | 0,95 | ||
0,0094 |
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | 0,05 | ||
(höchstens 80) | 0,95 | ||
0,0094 | 0,9906 | 1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "sterben" sind es 69.15%, also
die Wahrscheinlichkeit
berechnen.
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | 0,0065 | 0,05 | |
(höchstens 80) | 0,95 | ||
0,0094 | 0,9906 | 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | 0,0065 | 0,0435 | 0,05 |
(höchstens 80) | 0,0029 | 0,9471 | 0,95 |
0,0094 | 0,9906 | 1 |
Der gesuchte Wert, die Wahrscheinlichkeit für unter 80 Jahre und Krankheit überleben, ist also 0.9471 = 94.71%.
bedingte Wahrsch. (nur Zahlen)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | ||
---|---|---|---|
| 104 | 139 | 243 |
| 60 | 47 | 107 |
164 | 186 | 350 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
107 ⋅ x
= 60 = |:107
also
bedingte Wahrsch. (nur Prozente)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | ||
---|---|---|---|
| 0,12 | 0,18 | 0,3 |
| 0,55 | 0,15 | 0,7 |
0,67 | 0,33 | 1 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,7 ⋅ x
= 0,15 = |:0,7
also
bedingte Wahrsch. Anwendungen
Beispiel:
Schätzungen zufolge sind 8% der Lehrer Informatiklehrer. Von den anderen Lehrern nutzen 92% das MS-Office. Von den Informatik-Lehrern bevorzugen aber 85% ein anderes Office-Paket wie OpenOffice oder LibreOffice. Wie hoch ist der Anteil der Informatiklehrer an den Lehrern die ein offenes Office nutzen?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,08 | ||
(andere Lehrer) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,08 | ||
(andere Lehrer) | 0,92 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "Informatiklehrer" sind es 85%, also
die Wahrscheinlichkeit
berechnen.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,068 | 0,08 | |
(andere Lehrer) | 0,92 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "andere Lehrer" sind es 92%, also
die Wahrscheinlichkeit
berechnen.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,068 | 0,08 | |
(andere Lehrer) | 0,8464 | 0,92 | |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,012 | 0,068 | 0,08 |
(andere Lehrer) | 0,8464 | 0,0736 | 0,92 |
0,8584 | 0,1416 | 1 |
Gesucht ist ja "der Prozentsatz der Informatiklehrer an den OpenOffice-Nutzern", also die Wahrscheinlichkeit für
Um diese Wahrscheinlichkeit (bzw. prozentualer Anteil) zu bestimmmen, müssen wir nun das Baumdiagramm anders rum zeichnen. Das ist ja aber kein Problem, weil wir bereits die fertige Vierfeldertafel ausgefüllt haben.
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,1416 ⋅ x
= 0,068 = |:0,1416
also
Der gesuchte Wert (der Prozentsatz der Informatiklehrer an den OpenOffice-Nutzern) ist also 0,4802 = 48,02%.
Stochast. Unabhängigkeit Anwendungen
Beispiel:
Nach einer Umfrage könnten sich 29% der Befragten vorstellen, sich als nächstes Auto ein Elektroauto zu kaufen. 43% davon seien auch schon einmal in einem E-Auto gefahren. 40,47% der Befragten meinten, dass sie noch nie in einem E-Auto gesessen sind und sich sicher auch nie eines kaufen werden. Vervollständige die Vierfeldertafel und entscheide damit, ob die beiden Ereignisse "E-Auto kaufen" und "Erfahrung mit E-Auto" stochastisch unabhängig sind.
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,29 | ||
(nicht kaufen) | 0,4047 | ||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,29 | ||
(nicht kaufen) | 0,3053 | 0,4047 | 0,71 |
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "E-Auto kaufen" sind es 43%, also
die Wahrscheinlichkeit
berechnen.
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,1247 | 0,29 | |
(nicht kaufen) | 0,3053 | 0,4047 | 0,71 |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,1247 | 0,1653 | 0,29 |
(nicht kaufen) | 0,3053 | 0,4047 | 0,71 |
0,43 | 0,57 | 1 |
Jetzt können wir P(A)=0.29 mit P(B)=0.43 multiplizieren um zu überprüfen, ob dieses Produkt ungefähr den gleichen Wert hat wie
P(A ∩ B)=0.125, also:
P(A) ⋅ P(B) = 0.29 ⋅ 0.43 = 0.1247 ≈ 0.125
≈ 0.125 = P(A ∩ B),
A und B sind also näherungsweise stochastisch unabhängig.
Stochast. Unabhängigkeit rückwärts
Beispiel:
Vervollständige die Vierfeldertafel so, dass die beiden Ereignisse A und B stochastisch unabhängig sind.
Als erstes tragen wir rechts unten die Summe
|
| ||
---|---|---|---|
| |||
| 0,0666 | ||
0,18 | 1 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
P(B) + 0.18 = 1
Somit gilt: P(B) = 1 - 0.18 = 0.82
|
| ||
---|---|---|---|
| |||
| 0,0666 | ||
0,82 | 0,18 | 1 |
Weil wir ja wissen, dass die beiden Ereignisse A und B (und damit auch
also
somit gilt:
|
| ||
---|---|---|---|
| |||
| 0,0666 | 0,37 | |
0,82 | 0,18 | 1 |
Jetzt können wir einfach mit den Summen die Vierfeldertafel vollends wie üblich füllen.
|
| ||
---|---|---|---|
| 0,5166 | 0,1134 | 0,63 |
| 0,3034 | 0,0666 | 0,37 |
0,82 | 0,18 | 1 |