Aufgabenbeispiele von Vierfeldertafel
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Mengen-Operationen elementar
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge A = {2; 4; 5; 6; 7; 9; 10}. Bestimme
.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge A = {2; 4; 5; 6; 7; 9; 10}.
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge A={2; 4; 5; 6; 7; 9; 10} sind,
also
= {1; 3; 8}
Mengen-Operationen (allg.)
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {2; 3; 4; 5; 6; 7; 8; 9; 10} und B = {2; 3; 5; 9}. Bestimme
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {2; 3; 4; 5; 6; 7; 8; 9; 10} und B = {2; 3; 5; 9}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge A={2; 3; 4; 5; 6; 7; 8; 9; 10} sind,
also
= {1}
Die Menge
also
Mengen-Operationen Anwendungen
Beispiel:
In einer Urne sind 12 Kugeln mit den Zahlen 1 bis 12 beschriftet. Bestimme alle Kugeln deren Zahl keine Primzahl, aber höchstens die 7 ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12} und die Mengen A = {2; 3; 5; 7; 11} und B = {1; 2; 3; 4; 5; 6; 7}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12},
die nicht in der Menge A={2; 3; 5; 7; 11} sind,
also
= {1; 4; 6; 8; 9; 10; 12}
Die Menge
also
Mengen-Operationen Wahrscheinlichkeit
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ein Glücksrad wie rechts abgebildet wird einmal gedreht. Bestimme die Wahrscheinlichkeit, dass die Zahl des gewählten Sektors durch 4 teilbar ist oder der Hintergrund dieses Sektors eingefärbt ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8} und die Mengen A = {1; 3; 5; 6} und B = {4; 8}.
Die Menge
also
Da alle Elemente aus S gleich wahrscheinlich sind, kann man nun die gesuchte Wahrscheinlichkeit über die Anzahl der Elemente der Mengen bestimmen:
P(
Vierfeldertafel mit Anzahlen
Beispiel:
In der angezeigten Vierfeldertafel sind in jeder Zelle Anzahlen. Vervollständige die Vierfeldertafel.
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
25 + H(A ∩ ) = 123
Somit gilt: H(A ∩ ) = 123 - 25 = 98
25 | 98 | 123 | |
80 | |||
103 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
25 + 80 = H(B)
Somit gilt: H(B) = 25 + 80 = 105
25 | 98 | 123 | |
80 | |||
105 | 103 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
98 + H( ∩ ) = 103
Somit gilt: H( ∩ ) = 103 - 98 = 5
25 | 98 | 123 | |
80 | 5 | ||
105 | 103 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
80 + 5 = H( )
Somit gilt: H( ) = 80 + 5 = 85
25 | 98 | 123 | |
80 | 5 | 85 | |
105 | 103 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
105 + 103 = H(B + )
Somit gilt: H(B + ) = 105 + 103 = 208
25 | 98 | 123 | |
80 | 5 | 85 | |
105 | 103 | 208 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
Vierfeldertafel mit Wahrscheinlichkeiten
Beispiel:
In der angezeigten Vierfeldertafel stehen in jeder Zelle Wahrscheinlichkeiten. Vervollständige die Vierfeldertafel.
Als erstes tragen wir rechts unten die Summe P(A)+P( ) = P(B)+P( ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass gilt 100%.
0,15 | |||
0,07 | 0,44 | ||
1 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.07 + 0.44 = P( )
Somit gilt: P( ) = 0.07 + 0.44 = 0.51
0,15 | |||
0,07 | 0,44 | 0,51 | |
1 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.15 + 0.07 = P(B)
Somit gilt: P(B) = 0.15 + 0.07 = 0.22
0,15 | |||
0,07 | 0,44 | 0,51 | |
0,22 | 1 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
P(A) + 0.51 = 1
Somit gilt: P(A) = 1 - 0.51 = 0.49
0,15 | 0,49 | ||
0,07 | 0,44 | 0,51 | |
0,22 | 1 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.15 + P(A ∩ ) = 0.49
Somit gilt: P(A ∩ ) = 0.49 - 0.15 = 0.34
0,15 | 0,34 | 0,49 | |
0,07 | 0,44 | 0,51 | |
0,22 | 1 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.22 + P( ) = 1
Somit gilt: P( ) = 1 - 0.22 = 0.78
0,15 | 0,34 | 0,49 | |
0,07 | 0,44 | 0,51 | |
0,22 | 0,78 | 1 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
VFT Anwend. Häufigkeiten
Beispiel:
In einem Monat mit 31 Tagen gab es 13 Tage, an denen keine Schule war. Dummerweise gab es 10 Tage an denen Schule und schönes Wetter war und 6 Tage an denen keine Schule und kein schönes Wetter war. Wieviele schulfreie Tage mit schönem Wetter gab es?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: Schule
: nicht Schule, also schulfrei
: schönes Wetter
: nicht schönes Wetter, also schlechtes Wetter
Hiermit ergibt sich folgende Vierfeldertafel:
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | ||
(schulfrei) | 6 | 13 | |
31 |
Diese müssen wir nun vollends ausfüllen:
Rechenweg zum Ausfüllen der Vierfeldertafel einblenden
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H( ∩ B) + 6 = 13
Somit gilt: H( ∩ B) = 13 - 6 = 7
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | ||
(schulfrei) | 7 | 6 | 13 |
31 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
10 + 7 = H(B)
Somit gilt: H(B) = 10 + 7 = 17
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | ||
(schulfrei) | 7 | 6 | 13 |
17 | 31 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
H(A) + 13 = 31
Somit gilt: H(A) = 31 - 13 = 18
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | 18 | |
(schulfrei) | 7 | 6 | 13 |
17 | 31 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
10 + H(A ∩ ) = 18
Somit gilt: H(A ∩ ) = 18 - 10 = 8
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | 8 | 18 |
(schulfrei) | 7 | 6 | 13 |
17 | 31 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
17 + H( ) = 31
Somit gilt: H( ) = 31 - 17 = 14
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | 8 | 18 |
(schulfrei) | 7 | 6 | 13 |
17 | 14 | 31 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 10 | 8 | 18 |
(schulfrei) | 7 | 6 | 13 |
17 | 14 | 31 |
Der gesuchte Wert, Anzahl schulfreie schöne Tage, ist also 7.
VFT Anwend. prozentual (leichter)
Beispiel:
In einer groß angelegten Umfrage waren 57% der Befragten weiblich. Während 32% der männlichen Befragten angaben, Fußballfans zu sein, waren das bei den weiblichen Befragten nur 11%. Wie hoch ist der Prozentsatz der Fußballfans unter allen Befragten?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: weiblich
: nicht weiblich, also männlich
: Fußballfan
: nicht Fußballfan, also kein Fan
Hiermit ergibt sich folgende Vierfeldertafel:
(Fußballfan) |
(kein Fan) | ||
---|---|---|---|
(weiblich) | 0,57 | ||
(männlich) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe + = + = 1 ein, schließlich ist die Wahrscheinlichkeit, dass gilt oder dass gilt 100%.
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(Fußballfan) |
(kein Fan) | ||
---|---|---|---|
(weiblich) | 0,57 | ||
(männlich) | 0,43 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "weiblich" sind es 11%, also
,
die Wahrscheinlichkeit
=
berechnen.
(Fußballfan) |
(kein Fan) | ||
---|---|---|---|
(weiblich) | 0,0627 | 0,57 | |
(männlich) | 0,43 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "männlich" sind es 32%, also
die Wahrscheinlichkeit
berechnen.
(Fußballfan) |
(kein Fan) | ||
---|---|---|---|
(weiblich) | 0,0627 | 0,57 | |
(männlich) | 0,1376 | 0,43 | |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(Fußballfan) |
(kein Fan) | ||
---|---|---|---|
(weiblich) | 0,0627 | 0,5073 | 0,57 |
(männlich) | 0,1376 | 0,2924 | 0,43 |
0,2003 | 0,7997 | 1 |
Der gesuchte Wert, der Prozentsatz der Fußballfans, ist also 0.2003 = 20.03%.
VFT Anwend. prozentual (schwerer)
Beispiel:
Mit der Arbeit des Regierungschefs eines Staates sind 30% der Bevölkerung zufrieden. 70% dieser Zufriedenen sind aber auch Anhänger seiner eigenen Partei. 58,8% der Bevölkerung ist weder Anhänger seiner Partei noch zufrieden mit der Arbeit des Regierungschefs. Wie viel Prozent der Bevölkerung sind Anhänger seiner Partei?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(eigene Partei) |
(andere Partei) | ||
---|---|---|---|
(zufrieden) | 0,3 | ||
(unzufrieden) | 0,588 | ||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(eigene Partei) |
(andere Partei) | ||
---|---|---|---|
(zufrieden) | 0,3 | ||
(unzufrieden) | 0,112 | 0,588 | 0,7 |
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "zufrieden" sind es 70%, also
die Wahrscheinlichkeit
berechnen.
(eigene Partei) |
(andere Partei) | ||
---|---|---|---|
(zufrieden) | 0,21 | 0,3 | |
(unzufrieden) | 0,112 | 0,588 | 0,7 |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(eigene Partei) |
(andere Partei) | ||
---|---|---|---|
(zufrieden) | 0,21 | 0,09 | 0,3 |
(unzufrieden) | 0,112 | 0,588 | 0,7 |
0,322 | 0,678 | 1 |
Der gesuchte Wert, der Prozentsatz von Anhänger der Partei, ist also 0.322 = 32.2%.
bedingte Wahrsch. (nur Zahlen)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | ||
---|---|---|---|
| 155 | 150 | 305 |
| 200 | 88 | 288 |
355 | 238 | 593 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
238 ⋅ x
= 88 = |:238
also
bedingte Wahrsch. (nur Prozente)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | ||
---|---|---|---|
| 0,04 | 0,23 | 0,27 |
| 0,71 | 0,02 | 0,73 |
0,75 | 0,25 | 1 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,25 ⋅ x
= 0,02 = |:0,25
also
bedingte Wahrsch. Anwendungen
Beispiel:
Mit der Arbeit des Regierungschefs eines Staates sind von den Anhängern seiner eigenen Partei, deren Anteil 36% der Bevölkerung ausmacht, 68% zufrieden. Bei denen, die aber keine Anhängern dessen Partei sind, liegen die Zustimmungswerte nur bei 25%. Wie viel Prozent derjenigen, die mit der Arbeit des Regierungschefs zufrieden sind, sind auch Anhänger seiner Partei?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,36 | ||
(andere Partei) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,36 | ||
(andere Partei) | 0,64 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "eigene Partei" sind es 68%, also
die Wahrscheinlichkeit
berechnen.
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,2448 | 0,36 | |
(andere Partei) | 0,64 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "andere Partei" sind es 25%, also
die Wahrscheinlichkeit
berechnen.
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,2448 | 0,36 | |
(andere Partei) | 0,16 | 0,64 | |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,2448 | 0,1152 | 0,36 |
(andere Partei) | 0,16 | 0,48 | 0,64 |
0,4048 | 0,5952 | 1 |
Gesucht ist ja "der Anteil der Parteianhänger unter allen. die mit dem Regierungschef zufrieden sind", also die Wahrscheinlichkeit für
Um diese Wahrscheinlichkeit (bzw. prozentualer Anteil) zu bestimmmen, müssen wir nun das Baumdiagramm anders rum zeichnen. Das ist ja aber kein Problem, weil wir bereits die fertige Vierfeldertafel ausgefüllt haben.
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,4048 ⋅ x
= 0,2448 = |:0,4048
also
Der gesuchte Wert (der Anteil der Parteianhänger unter allen. die mit dem Regierungschef zufrieden sind) ist also 0,6047 = 60,47%.
Stochast. Unabhängigkeit Anwendungen
Beispiel:
In der Jahrgangstufe der 10-Klässler müssen die 120 Schülerinnen und Schüler ihre Kurse für die Kurstufe wählen. Jeder muss entweder Mathe Leistungsfach oder Mathe Basisfach wählen. Von den Mädchen wählen 29 das Leistungsfach. 35 von den insgesamt 54 Basisfachwahlen kommen von den Jungs. Vervollständige die Vierfeldertafel und entscheide damit, ob die beiden Ereignisse Geschlecht und Mathewahlen stochastisch unabhängig sind.
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | ||
(Jungs) | 35 | ||
54 | 120 |
Diese müssen wir nun vollends ausfüllen:
Rechenweg zum Ausfüllen der Vierfeldertafel einblenden
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H(B) + 54 = 120
Somit gilt: H(B) = 120 - 54 = 66
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | ||
(Jungs) | 35 | ||
66 | 54 | 120 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
29 + H(
Somit gilt: H(
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | ||
(Jungs) | 37 | 35 | |
66 | 54 | 120 |
In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
H(A ∩
Somit gilt: H(A ∩
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | 19 | |
(Jungs) | 37 | 35 | |
66 | 54 | 120 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
29 + 19 = H(A)
Somit gilt: H(A) = 29 + 19 = 48
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | 19 | 48 |
(Jungs) | 37 | 35 | |
66 | 54 | 120 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
37 + 35 = H(
Somit gilt: H(
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | 19 | 48 |
(Jungs) | 37 | 35 | 72 |
66 | 54 | 120 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
(Leistungsfach) |
(Basisfach) | ||
---|---|---|---|
(Mädchen) | 29 | 19 | 48 |
(Jungs) | 37 | 35 | 72 |
66 | 54 | 120 |
Um zu überprüfen, ob die beiden Ereignisse A (Mädchen) und B (Leistungsfach) stochatisch unabhängig sind, müssen wir die absoluten Zahlen zuerst in relative Häufigkeiten umwandeln. Dazu teilen wir einfach alle Zellen durch den Gesamtwert in der rechten unteren Zelle: 120. und runden diese auf drei Stellen hinter dem Komma. Wir erhalten so erhalten:
|
| ||
---|---|---|---|
| 0,242 | 0,158 | 0,4 |
| 0,308 | 0,292 | 0,6 |
0,55 | 0,45 | 1 |
Jetzt können wir P(A)=0.4 mit P(B)=0.55 multiplizieren um zu überprüfen, ob dieses Produkt ungefähr den gleichen Wert hat wie
P(A ∩ B)=0.242, also:
P(A) ⋅ P(B) = 0.4 ⋅ 0.55 = 0.22
≠ 0.242 = P(A ∩ B),
A und B sind also stochastisch abhängig.
Stochast. Unabhängigkeit rückwärts
Beispiel:
Vervollständige die Vierfeldertafel so, dass die beiden Ereignisse A und B stochastisch unabhängig sind.
Als erstes tragen wir rechts unten die Summe
|
| ||
---|---|---|---|
| 0,135 | ||
| 0,73 | ||
1 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
P(A) + 0.73 = 1
Somit gilt: P(A) = 1 - 0.73 = 0.27
|
| ||
---|---|---|---|
| 0,135 | 0,27 | |
| 0,73 | ||
1 |
Weil wir ja wissen, dass die beiden Ereignisse A und B (und damit auch
also 0.27 ⋅
somit gilt:
|
| ||
---|---|---|---|
| 0,135 | 0,27 | |
| 0,73 | ||
0,5 | 1 |
Jetzt können wir einfach mit den Summen die Vierfeldertafel vollends wie üblich füllen.
|
| ||
---|---|---|---|
| 0,135 | 0,135 | 0,27 |
| 0,365 | 0,365 | 0,73 |
0,5 | 0,5 | 1 |