Aufgabenbeispiele von Umfang und Fläche
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Umfang eines Kreises
Beispiel:
Ein Kreis hat den Radius 18 mm. Bestimme seinen Umfang.
Wir wenden einfach die Formel
U = 2π r
an und erhalten so:
U = 2 ⋅ π ⋅ 18 mm ≈ 113,097 mm
Vom Umfang zum Radius
Beispiel:
Ein Kreis hat den Umfang U = 1.5 m. Bestimme seinen Radius.
Wir wenden einfach die Formel
U = 2π r
an und stellen um nach:
r =
So erhalten wir:
r = m ≈ 0,239 m
Kreisfläche
Beispiel:
Ein Kreis hat den Durchmesser 97 mm. Bestimme seinen Flächeninhalt.
Zuerst müssen wir den Radius als halben Durchmesser berechnnen: r = mm = 48.5mm
Wir wenden einfach die Formel
A = π ⋅ r2
an und erhalten so:
A = π ⋅ 48.52 mm² ≈ 7389,811 mm²
Von der Kreisfläche zum Radius
Beispiel:
Ein Kreis hat den Flächeninhalt A = 39 mm². Bestimme seinen Radius.
Wir wenden einfach die Formel
A = π r2
an und stellen um nach:
r2 =
r =
So erhalten wir:
r ≈
Teilflächen von Kreisen
Beispiel:
Berechne den Inhalt der blauen Fläche.
Man berechnet die blaue Fläche einfach als Differenz des Flächeninhalts des großen Kreises mit Radius r1=
Somit gilt:
A = π ⋅ 382 - π ⋅ 152
= 1444⋅π - 225⋅π
=
1219⋅π
Also A ≈ 3829,6 m2