Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 0 Minuten sind 20 Liter im Tank. Wieviel Liter sind nach 3 Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 0 und 3:
=
=
=
≈ 1,9
Der neue Bestand setzt sich aus dem Anfangsbestand bei 0 und der Änderung zwischen 0 und 3
zusammen:
B = 20 +
≈ 21.9
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 15 m zurückgelegt. Wie weit ist er nach Sekunden?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen und :
=
=
=
=
=
=
=
=
=
≈ 54,222
Der neue Bestand setzt sich aus dem Anfangsbestand bei und der Änderung zwischen und
zusammen:
B = 15 + = ≈ 69.22
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:() |
|
|
= |
|
|
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Bestimme die Durchschnittstemperatur zwischen und .
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
= 0
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=4 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
ln(
|
-(
u
)
+2
|
)
-
ln(
|
-4
+2
|
)
=
ln(
|
-u
+2
|
)
-
ln(
|
-4
+2
|
)
=
ln(
|
-u
+2
|
)
-
ln(
2
)
Für u → ∞ gilt: A(u) =
-
ln(
2
)
+
ln(
|
-x
+2
|
)
→
∞