Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 9 m zurückgelegt. Wie weit ist er nach Sekunden?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen und :
=
=
=
=
=
=
=
=
=
Der neue Bestand setzt sich aus dem Anfangsbestand bei und der Änderung zwischen und
zusammen:
B = 9 + =
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 1 Minuten sind 5 Liter im Tank. Wieviel Liter sind nach 3 Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 1 und 3:
=
=
=
=
≈ 4,003
Der neue Bestand setzt sich aus dem Anfangsbestand bei 1 und der Änderung zwischen 1 und 3
zusammen:
B = 5 +
≈ 9
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)= zwischen 2 und 3.
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
≈ 9,362
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=2 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
→
=
≈ -0.667
Für den Flächeninhalt (immer positiv) gilt also I = 0.667