Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=1 sind 78 Bakterien vorhanden. Wie viele sind es nach 4 Minuten?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 1 und 4:
=
=
=
≈ 1827,496
Der neue Bestand setzt sich aus dem Anfangsbestand bei 1 und der Änderung zwischen 1 und 4
zusammen:
B = 78 +
≈ 1905.5
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 1 Minuten sind 8 Liter im Tank. Wieviel Liter sind nach 2 Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 1 und 2:
=
=
=
=
=
=
=
=
=
Der neue Bestand setzt sich aus dem Anfangsbestand bei 1 und der Änderung zwischen 1 und 2
zusammen:
B = 8 + =
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|
Mittelwerte
Beispiel:
Bestimme den Mittelwert der Funktionswerte von f mit f(x)= zwischen 0 und 1.
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
=
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse, der Geraden x= und der Geraden x=2 eine nach oben bzw. unten offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
=
=
=
Für u → 2 (u>2, also von rechts) gilt: A(u) =
→
=
≈ -6
Für den Flächeninhalt (immer positiv) gilt also I = 6