Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=2 sind 64 Bakterien vorhanden. Wie viele sind es nach 4 Minuten?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 2 und 4:
=
=
=
≈ 594,06
Der neue Bestand setzt sich aus dem Anfangsbestand bei 2 und der Änderung zwischen 2 und 4
zusammen:
B = 64 +
≈ 658.06
Integralanwendungen
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach s hat er bereits 12 m zurückgelegt. Wie weit ist er nach Sekunden?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen und :
=
=
=
=
=
=
=
=
=
≈ 101,667
Der neue Bestand setzt sich aus dem Anfangsbestand bei und der Änderung zwischen und
zusammen:
B = 12 + = ≈ 113.67
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|
Mittelwerte
Beispiel:
Die Menge an Wasser in einem Wassertank zur Zeit x (in min) kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Wieviel Wasser sind während der ersten 3 Minuten durchschnittlich im Tank?
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
=
=
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse, der Geraden x=3 und der y-Achse eine nach oben bzw. unten offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
=
=
=
Für u → 0 (u>0, also von rechts) gilt: A(u) =
→