Integralanwendungen BF
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=1 sind 66 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 1 und 3:
=
=
=
=
≈ 437,085
Der neue Bestand setzt sich aus dem Anfangsbestand bei 1 und der Änderung zwischen 1 und 3
zusammen:
B = 66 +
≈ 503.08
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach Minuten sind 4 Liter im Tank. Wieviel Liter sind nach Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen und :
=
=
=
=
=
=
=
=
=
Der neue Bestand setzt sich aus dem Anfangsbestand bei und der Änderung zwischen und
zusammen:
B = 4 + =
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)= (in mg) beschrieben werden. Berechne die mittlere Wirkstoffmenge in mg zwischen Minute 0 und Minute 3.
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
=
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=3 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
1
3
ln(
|
-3(
u
)
+6
|
)
-
1
3
ln(
|
-3⋅3
+6
|
)
=
1
3
ln(
|
-3u
+6
|
)
-
1
3
ln(
|
-9
+6
|
)
=
1
3
ln(
|
-3u
+6
|
)
-
1
3
ln(
3
)
Für u → ∞ gilt: A(u) =
-
1
3
ln(
3
)
+
1
3
ln(
|
-3x
+6
|
)
→
∞