Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach Minuten sind 9 Liter im Tank. Wieviel Liter sind nach Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen und :
=
=
=
=
=
=
=
=
=
=
≈ 16,889
Der neue Bestand setzt sich aus dem Anfangsbestand bei und der Änderung zwischen und
zusammen:
B = 9 + = ≈ 25.89
Integralanwendungen
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=1 sind 75 Bakterien vorhanden. Wie viele sind es nach 2 Minuten?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 1 und 2:
=
=
=
≈ 0,632
Der neue Bestand setzt sich aus dem Anfangsbestand bei 1 und der Änderung zwischen 1 und 2
zusammen:
B = 75 +
≈ 75.63
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Bestimme die Durchschnittstemperatur zwischen und .
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
=
≈ -1,061
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x= eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
→