Integralanwendungen BF
Beispiel:
Die Bewegungsgeschwindigkeit eines Körpers lässt sich nährungsweise durch die Funktion f mit f(x)= (in m/s, x in Sekunden) beschreiben. Nach 3s hat er bereits 19 m zurückgelegt. Wie weit ist er nach 5 Sekunden?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 3 und 5:
=
=
=
=
=
=
=
=
≈ 2,222
Der neue Bestand setzt sich aus dem Anfangsbestand bei 3 und der Änderung zwischen 3 und 5
zusammen:
B = 19 + = ≈ 21.22
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 1 Minuten sind 9 Liter im Tank. Wieviel Liter sind nach 4 Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 1 und 4:
=
=
=
≈ 114,513
Der neue Bestand setzt sich aus dem Anfangsbestand bei 1 und der Änderung zwischen 1 und 4
zusammen:
B = 9 +
≈ 123.51
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|
Mittelwerte
Beispiel:
Die Menge eines Wirkstoffs im Blut eines Patienten kann zur Zeit x (in min) näherungsweise durch die Funktion f mit f(x)= (in mg) beschrieben werden. Berechne die mittlere Wirkstoffmenge in mg zwischen Minute und Minute .
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
=
=
=
=
=
≈ 22,593
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse und der Geraden x=4 eine nach rechts offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
=
=
=
Für u → ∞ gilt: A(u) =
→
=
≈ -2
Für den Flächeninhalt (immer positiv) gilt also I = 2