Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach Minuten sind 18 Liter im Tank. Wieviel Liter sind nach Minuten darin?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen und :
=
=
=
=
=
=
=
=
=
Der neue Bestand setzt sich aus dem Anfangsbestand bei und der Änderung zwischen und
zusammen:
B = 18 + =
Integralanwendungen
Beispiel:
Bei einer Bakterienkultur geht man von einer Wachstumsrate von Bakterien pro Minute zur Zeit x (in Minuten) aus. Zu Zeitpunkt x=2 sind 68 Bakterien vorhanden. Wie viele sind es nach 3 Minuten?
Lösung einblenden
Zuerst berechnen wir die Änderung des Bestands zwischen 2 und 3:
=
=
=
=
≈ 6,389
Der neue Bestand setzt sich aus dem Anfangsbestand bei 2 und der Änderung zwischen 2 und 3
zusammen:
B = 68 +
≈ 74.39
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 0 so, dass =
Lösung einblenden
=
=
=
|
|
= |
|
|
|
|
|
= |
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:() |
|
|
= |
|
|
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)= beschrieben werden. Bestimme die Durchschnittstemperatur zwischen und .
Lösung einblenden
Wir berechnen den Mittelwert mit der üblichen Formel:
m =
=
=
=
=
=
=
≈ -1,273
uneigentliche Integrale
Beispiel:
Das Schaubild der Funktion f mit f(x)= schließt mit der x-Achse, der Geraden x=2 und der Geraden x=1 eine nach oben bzw. unten offene Fläche ein.
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
Lösung einblenden
A(u)=
=
=
=
=
=
=
=
Für u → 1 (u>1, also von rechts) gilt: A(u) =
→