Aufgabenbeispiele von Änderungsrate -> Bestand
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integrale graphisch BF
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Trapezfläche I1 = (2 - 0) ⋅
= 2 ⋅
I2 (von 2 bis 5):
Rechtecksfläche I2 = (5 - 2) ⋅
I3 (von 5 bis 8):
Trapezfläche I3 = (8 - 5) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 8 gilt somit:
Iges = 8
Integrale graphisch BF (mit Startwert)
Beispiel:
Den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 3): Dreiecksfläche I1 = = = 3.
I2 (von 3 bis 6):
Rechtecksfläche I2 = (6 - 3) ⋅
I3 (von 6 bis 9):
Trapezfläche I3 = (9 - 6) ⋅
= 3 ⋅
Für den Zuwachs des Bestands (Personen auf dem Festivalgelände) zwischen 0 und 9 gilt somit:
Iges = 3
Da zu Begin ja bereits 25 Personen vorhanden waren, sind es nun nach 9 s
I9 = 25 Personen
Integrale graphisch BF (mit Endwert)
Beispiel:
Den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 8 können wir durch den orientierten (mit Vorzeichen behafteten) Inhalt der Fläche zwischen dem Graph und der x-Achse ablesen (bzw. berechnen).
Dazu unterteilen wir die Fläche in Rechtecke, Parallelogrammen und ggf. Dreiecke:
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = 6.
I3 (von 5 bis 8): Dreiecksfläche I3 = = = -6.
Für den Zuwachs (bzw. die Abnahme) des Bestands (Entfernung der Lok vom Bahnhof) zwischen 0 und 8 gilt somit:
Iges = 8
Da ja nach 8 s 88 cm vorhanden sind, und zwischen t=0 und t=8 insgesamt 8 cm dazu kam,
müssen es zu Beginn
Istart =
88 cm -
Min. und Maximum bei graph. Integral
Beispiel:
Im ersten Teil zwischen t=0 und t=5 nimmt der Bestand (Wasser im Wassertank) ausschließlich zu, und zwar um:
IZunahme =
I1 (von 0 bis 2):
Rechtecksfläche I1 = (2 - 0) ⋅
I2 (von 2 bis 5): Dreiecksfläche I2 = = = 6.
Somit nimmt der Bestand bis t=5 um 8
Weil danach der Bestand wieder ständig abnimmt, ist zum Zeitpunkt t=5 der maximale Bestand (Wasser im Wassertank) erreicht mit:
Bmax = 65 m³
Die anschließende Abnahme lässt sich wieder über die Dreiecks-, Rechtecks- bzw. Trapezflächen berechnnen:
I3 (von 5 bis 8): Dreiecksfläche I3 = = = -1.5.
I4 (von 8 bis 10):
Rechtecksfläche I4 = (10 - 8) ⋅
Damit ergibt sich am Ende des Beobachtungszeitraums ein Bestand (Wasser im Wassertank) von Bend = 79 m³
Da dies nicht weniger ist als zu Beginn der Beobachtung (65 m³), ist der minimale Bestand (Wasser im Wassertank) der Startwert:
Bmin = 65 m³