Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 38 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 33, weil ja 3 ⋅ 11 = 33 ist.

Also bleibt als Rest eben noch 38 - 33 = 5.

Somit gilt: 38 mod 11 ≡ 5.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 50 und 59 für die gilt n ≡ 64 mod 6.

Lösung einblenden

Das nächst kleinere Vielfache von 6 ist 60, weil ja 10 ⋅ 6 = 60 ist.

Also bleibt als Rest eben noch 64 - 60 = 4.

Somit gilt: 64 mod 6 ≡ 4.

Wir suchen also eine Zahl zwischen 50 und 59 für die gilt: n ≡ 4 mod 6.

Dazu suchen wir erstmal ein Vielfaches von 6 in der Nähe von 50, z.B. 48 = 8 ⋅ 6

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 6 , sondern ≡ 4 mod 6 sein, also addieren wir noch 4 auf die 48 und erhalten so 52.

Somit gilt: 52 ≡ 64 ≡ 4 mod 6.

Modulo addieren

Beispiel:

Berechne ohne WTR: (903 - 11999) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(903 - 11999) mod 3 ≡ (903 mod 3 - 11999 mod 3) mod 3.

903 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 903 = 900+3 = 3 ⋅ 300 +3.

11999 mod 3 ≡ 2 mod 3 kann man relativ leicht bestimmen, weil ja 11999 = 12000-1 = 3 ⋅ 4000 -1 = 3 ⋅ 4000 - 3 + 2.

Somit gilt:

(903 - 11999) mod 3 ≡ (0 - 2) mod 3 ≡ -2 mod 3 ≡ 1 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (44 ⋅ 80) mod 9.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(44 ⋅ 80) mod 9 ≡ (44 mod 9 ⋅ 80 mod 9) mod 9.

44 mod 9 ≡ 8 mod 9 kann man relativ leicht bestimmen, weil ja 44 = 36 + 8 = 4 ⋅ 9 + 8 ist.

80 mod 9 ≡ 8 mod 9 kann man relativ leicht bestimmen, weil ja 80 = 72 + 8 = 8 ⋅ 9 + 8 ist.

Somit gilt:

(44 ⋅ 80) mod 9 ≡ (8 ⋅ 8) mod 9 ≡ 64 mod 9 ≡ 1 mod 9.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
11 mod m = 15 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 11 aus, ob zufällig 11 mod m = 15 mod m gilt:

m=2: 11 mod 2 = 1 = 1 = 15 mod 2

m=3: 11 mod 3 = 2 ≠ 0 = 15 mod 3

m=4: 11 mod 4 = 3 = 3 = 15 mod 4

m=5: 11 mod 5 = 1 ≠ 0 = 15 mod 5

m=6: 11 mod 6 = 5 ≠ 3 = 15 mod 6

m=7: 11 mod 7 = 4 ≠ 1 = 15 mod 7

m=8: 11 mod 8 = 3 ≠ 7 = 15 mod 8

m=9: 11 mod 9 = 2 ≠ 6 = 15 mod 9

m=10: 11 mod 10 = 1 ≠ 5 = 15 mod 10

m=11: 11 mod 11 = 0 ≠ 4 = 15 mod 11

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (15 - 11) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4