Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 21 mod 8.
Das nächst kleinere Vielfache von 8 ist 16, weil ja 2 ⋅ 8 = 16 ist.
Also bleibt als Rest eben noch 21 - 16 = 5.
Somit gilt: 21 mod 8 ≡ 5.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 80 und 89 für die gilt n ≡ 41 mod 9.
Das nächst kleinere Vielfache von 9 ist 36, weil ja 4 ⋅ 9 = 36 ist.
Also bleibt als Rest eben noch 41 - 36 = 5.
Somit gilt: 41 mod 9 ≡ 5.
Wir suchen also eine Zahl zwischen 80 und 89 für die gilt: n ≡ 5 mod 9.
Dazu suchen wir erstmal ein Vielfaches von 9 in der Nähe von 80, z.B. 81 = 9 ⋅ 9
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 9 , sondern ≡ 5 mod 9 sein, also addieren wir noch 5 auf die 81 und erhalten so 86.
Somit gilt: 86 ≡ 41 ≡ 5 mod 9.
Modulo addieren
Beispiel:
Berechne ohne WTR: (804 + 3193) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(804 + 3193) mod 8 ≡ (804 mod 8 + 3193 mod 8) mod 8.
804 mod 8 ≡ 4 mod 8 kann man relativ leicht bestimmen, weil ja 804
= 800
3193 mod 8 ≡ 1 mod 8 kann man relativ leicht bestimmen, weil ja 3193
= 3200
Somit gilt:
(804 + 3193) mod 8 ≡ (4 + 1) mod 8 ≡ 5 mod 8.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (27 ⋅ 44) mod 9.
Um längere Rechnungen zu vermeiden, rechnen wir:
(27 ⋅ 44) mod 9 ≡ (27 mod 9 ⋅ 44 mod 9) mod 9.
27 mod 9 ≡ 0 mod 9 kann man relativ leicht bestimmen, weil ja 27 = 27 + 0 = 3 ⋅ 9 + 0 ist.
44 mod 9 ≡ 8 mod 9 kann man relativ leicht bestimmen, weil ja 44 = 36 + 8 = 4 ⋅ 9 + 8 ist.
Somit gilt:
(27 ⋅ 44) mod 9 ≡ (0 ⋅ 8) mod 9 ≡ 0 mod 9.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
14 mod m = 20 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 14 aus, ob zufällig 14 mod m = 20 mod m gilt:
m=2: 14 mod 2 = 0 = 0 = 20 mod 2
m=3: 14 mod 3 = 2 = 2 = 20 mod 3
m=4: 14 mod 4 = 2 ≠ 0 = 20 mod 4
m=5: 14 mod 5 = 4 ≠ 0 = 20 mod 5
m=6: 14 mod 6 = 2 = 2 = 20 mod 6
m=7: 14 mod 7 = 0 ≠ 6 = 20 mod 7
m=8: 14 mod 8 = 6 ≠ 4 = 20 mod 8
m=9: 14 mod 9 = 5 ≠ 2 = 20 mod 9
m=10: 14 mod 10 = 4 ≠ 0 = 20 mod 10
m=11: 14 mod 11 = 3 ≠ 9 = 20 mod 11
m=12: 14 mod 12 = 2 ≠ 8 = 20 mod 12
m=13: 14 mod 13 = 1 ≠ 7 = 20 mod 13
m=14: 14 mod 14 = 0 ≠ 6 = 20 mod 14
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (20 - 14) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
