Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 50 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 49, weil ja 7 ⋅ 7 = 49 ist.

Also bleibt als Rest eben noch 50 - 49 = 1.

Somit gilt: 50 mod 7 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 10 und 21 für die gilt n ≡ 86 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 77, weil ja 7 ⋅ 11 = 77 ist.

Also bleibt als Rest eben noch 86 - 77 = 9.

Somit gilt: 86 mod 11 ≡ 9.

Wir suchen also eine Zahl zwischen 10 und 21 für die gilt: n ≡ 9 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 10, z.B. 11 = 1 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 9 mod 11 sein, also addieren wir noch 9 auf die 11 und erhalten so 20.

Somit gilt: 20 ≡ 86 ≡ 9 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (188 - 86) mod 9.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(188 - 86) mod 9 ≡ (188 mod 9 - 86 mod 9) mod 9.

188 mod 9 ≡ 8 mod 9 kann man relativ leicht bestimmen, weil ja 188 = 180+8 = 9 ⋅ 20 +8.

86 mod 9 ≡ 5 mod 9 kann man relativ leicht bestimmen, weil ja 86 = 90-4 = 9 ⋅ 10 -4 = 9 ⋅ 10 - 9 + 5.

Somit gilt:

(188 - 86) mod 9 ≡ (8 - 5) mod 9 ≡ 3 mod 9.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (30 ⋅ 83) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(30 ⋅ 83) mod 4 ≡ (30 mod 4 ⋅ 83 mod 4) mod 4.

30 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 30 = 28 + 2 = 7 ⋅ 4 + 2 ist.

83 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 83 = 80 + 3 = 20 ⋅ 4 + 3 ist.

Somit gilt:

(30 ⋅ 83) mod 4 ≡ (2 ⋅ 3) mod 4 ≡ 6 mod 4 ≡ 2 mod 4.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
21 mod m = 27 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 21 aus, ob zufällig 21 mod m = 27 mod m gilt:

m=2: 21 mod 2 = 1 = 1 = 27 mod 2

m=3: 21 mod 3 = 0 = 0 = 27 mod 3

m=4: 21 mod 4 = 1 ≠ 3 = 27 mod 4

m=5: 21 mod 5 = 1 ≠ 2 = 27 mod 5

m=6: 21 mod 6 = 3 = 3 = 27 mod 6

m=7: 21 mod 7 = 0 ≠ 6 = 27 mod 7

m=8: 21 mod 8 = 5 ≠ 3 = 27 mod 8

m=9: 21 mod 9 = 3 ≠ 0 = 27 mod 9

m=10: 21 mod 10 = 1 ≠ 7 = 27 mod 10

m=11: 21 mod 11 = 10 ≠ 5 = 27 mod 11

m=12: 21 mod 12 = 9 ≠ 3 = 27 mod 12

m=13: 21 mod 13 = 8 ≠ 1 = 27 mod 13

m=14: 21 mod 14 = 7 ≠ 13 = 27 mod 14

m=15: 21 mod 15 = 6 ≠ 12 = 27 mod 15

m=16: 21 mod 16 = 5 ≠ 11 = 27 mod 16

m=17: 21 mod 17 = 4 ≠ 10 = 27 mod 17

m=18: 21 mod 18 = 3 ≠ 9 = 27 mod 18

m=19: 21 mod 19 = 2 ≠ 8 = 27 mod 19

m=20: 21 mod 20 = 1 ≠ 7 = 27 mod 20

m=21: 21 mod 21 = 0 ≠ 6 = 27 mod 21

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (27 - 21) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6