Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 63 mod 3.

Lösung einblenden

Das nächst kleinere Vielfache von 3 ist 63, weil ja 21 ⋅ 3 = 63 ist.

Also bleibt als Rest eben noch 63 - 63 = 0.

Somit gilt: 63 mod 3 ≡ 0.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 50 und 59 für die gilt n ≡ 78 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 72, weil ja 9 ⋅ 8 = 72 ist.

Also bleibt als Rest eben noch 78 - 72 = 6.

Somit gilt: 78 mod 8 ≡ 6.

Wir suchen also eine Zahl zwischen 50 und 59 für die gilt: n ≡ 6 mod 8.

Dazu suchen wir erstmal ein Vielfaches von 8 in der Nähe von 50, z.B. 48 = 6 ⋅ 8

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 8 , sondern ≡ 6 mod 8 sein, also addieren wir noch 6 auf die 48 und erhalten so 54.

Somit gilt: 54 ≡ 78 ≡ 6 mod 8.

Modulo addieren

Beispiel:

Berechne ohne WTR: (124 - 20000) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(124 - 20000) mod 4 ≡ (124 mod 4 - 20000 mod 4) mod 4.

124 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 124 = 120+4 = 4 ⋅ 30 +4.

20000 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 20000 = 20000+0 = 4 ⋅ 5000 +0.

Somit gilt:

(124 - 20000) mod 4 ≡ (0 - 0) mod 4 ≡ 0 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (22 ⋅ 66) mod 9.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(22 ⋅ 66) mod 9 ≡ (22 mod 9 ⋅ 66 mod 9) mod 9.

22 mod 9 ≡ 4 mod 9 kann man relativ leicht bestimmen, weil ja 22 = 18 + 4 = 2 ⋅ 9 + 4 ist.

66 mod 9 ≡ 3 mod 9 kann man relativ leicht bestimmen, weil ja 66 = 63 + 3 = 7 ⋅ 9 + 3 ist.

Somit gilt:

(22 ⋅ 66) mod 9 ≡ (4 ⋅ 3) mod 9 ≡ 12 mod 9 ≡ 3 mod 9.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
19 mod m = 28 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 19 aus, ob zufällig 19 mod m = 28 mod m gilt:

m=2: 19 mod 2 = 1 ≠ 0 = 28 mod 2

m=3: 19 mod 3 = 1 = 1 = 28 mod 3

m=4: 19 mod 4 = 3 ≠ 0 = 28 mod 4

m=5: 19 mod 5 = 4 ≠ 3 = 28 mod 5

m=6: 19 mod 6 = 1 ≠ 4 = 28 mod 6

m=7: 19 mod 7 = 5 ≠ 0 = 28 mod 7

m=8: 19 mod 8 = 3 ≠ 4 = 28 mod 8

m=9: 19 mod 9 = 1 = 1 = 28 mod 9

m=10: 19 mod 10 = 9 ≠ 8 = 28 mod 10

m=11: 19 mod 11 = 8 ≠ 6 = 28 mod 11

m=12: 19 mod 12 = 7 ≠ 4 = 28 mod 12

m=13: 19 mod 13 = 6 ≠ 2 = 28 mod 13

m=14: 19 mod 14 = 5 ≠ 0 = 28 mod 14

m=15: 19 mod 15 = 4 ≠ 13 = 28 mod 15

m=16: 19 mod 16 = 3 ≠ 12 = 28 mod 16

m=17: 19 mod 17 = 2 ≠ 11 = 28 mod 17

m=18: 19 mod 18 = 1 ≠ 10 = 28 mod 18

m=19: 19 mod 19 = 0 ≠ 9 = 28 mod 19

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (28 - 19) = 9 bestimmen:

die gesuchten Zahlen sind somit:

3; 9