Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 29 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 28, weil ja 7 ⋅ 4 = 28 ist.

Also bleibt als Rest eben noch 29 - 28 = 1.

Somit gilt: 29 mod 4 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 77 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 77, weil ja 11 ⋅ 7 = 77 ist.

Also bleibt als Rest eben noch 77 - 77 = 0.

Somit gilt: 77 mod 7 ≡ 0.

Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 0 mod 7.

Dazu suchen wir einfach ein Vielfaches von 7 in der Nähe von 60, z.B. 63 = 9 ⋅ 7

Somit gilt: 63 ≡ 77 ≡ 0 mod 7.

Modulo addieren

Beispiel:

Berechne ohne WTR: (600 + 27) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(600 + 27) mod 3 ≡ (600 mod 3 + 27 mod 3) mod 3.

600 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 600 = 600+0 = 3 ⋅ 200 +0.

27 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 27 = 30-3 = 3 ⋅ 10 -3 = 3 ⋅ 10 - 3 + 0.

Somit gilt:

(600 + 27) mod 3 ≡ (0 + 0) mod 3 ≡ 0 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (40 ⋅ 75) mod 10.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(40 ⋅ 75) mod 10 ≡ (40 mod 10 ⋅ 75 mod 10) mod 10.

40 mod 10 ≡ 0 mod 10 kann man relativ leicht bestimmen, weil ja 40 = 40 + 0 = 4 ⋅ 10 + 0 ist.

75 mod 10 ≡ 5 mod 10 kann man relativ leicht bestimmen, weil ja 75 = 70 + 5 = 7 ⋅ 10 + 5 ist.

Somit gilt:

(40 ⋅ 75) mod 10 ≡ (0 ⋅ 5) mod 10 ≡ 0 mod 10.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
29 mod m = 39 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 29 aus, ob zufällig 29 mod m = 39 mod m gilt:

m=2: 29 mod 2 = 1 = 1 = 39 mod 2

m=3: 29 mod 3 = 2 ≠ 0 = 39 mod 3

m=4: 29 mod 4 = 1 ≠ 3 = 39 mod 4

m=5: 29 mod 5 = 4 = 4 = 39 mod 5

m=6: 29 mod 6 = 5 ≠ 3 = 39 mod 6

m=7: 29 mod 7 = 1 ≠ 4 = 39 mod 7

m=8: 29 mod 8 = 5 ≠ 7 = 39 mod 8

m=9: 29 mod 9 = 2 ≠ 3 = 39 mod 9

m=10: 29 mod 10 = 9 = 9 = 39 mod 10

m=11: 29 mod 11 = 7 ≠ 6 = 39 mod 11

m=12: 29 mod 12 = 5 ≠ 3 = 39 mod 12

m=13: 29 mod 13 = 3 ≠ 0 = 39 mod 13

m=14: 29 mod 14 = 1 ≠ 11 = 39 mod 14

m=15: 29 mod 15 = 14 ≠ 9 = 39 mod 15

m=16: 29 mod 16 = 13 ≠ 7 = 39 mod 16

m=17: 29 mod 17 = 12 ≠ 5 = 39 mod 17

m=18: 29 mod 18 = 11 ≠ 3 = 39 mod 18

m=19: 29 mod 19 = 10 ≠ 1 = 39 mod 19

m=20: 29 mod 20 = 9 ≠ 19 = 39 mod 20

m=21: 29 mod 21 = 8 ≠ 18 = 39 mod 21

m=22: 29 mod 22 = 7 ≠ 17 = 39 mod 22

m=23: 29 mod 23 = 6 ≠ 16 = 39 mod 23

m=24: 29 mod 24 = 5 ≠ 15 = 39 mod 24

m=25: 29 mod 25 = 4 ≠ 14 = 39 mod 25

m=26: 29 mod 26 = 3 ≠ 13 = 39 mod 26

m=27: 29 mod 27 = 2 ≠ 12 = 39 mod 27

m=28: 29 mod 28 = 1 ≠ 11 = 39 mod 28

m=29: 29 mod 29 = 0 ≠ 10 = 39 mod 29

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (39 - 29) = 10 bestimmen:

die gesuchten Zahlen sind somit:

2; 5; 10