Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 92 mod 9.

Lösung einblenden

Das nächst kleinere Vielfache von 9 ist 90, weil ja 10 ⋅ 9 = 90 ist.

Also bleibt als Rest eben noch 92 - 90 = 2.

Somit gilt: 92 mod 9 ≡ 2.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 30 und 40 für die gilt n ≡ 53 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 50, weil ja 5 ⋅ 10 = 50 ist.

Also bleibt als Rest eben noch 53 - 50 = 3.

Somit gilt: 53 mod 10 ≡ 3.

Wir suchen also eine Zahl zwischen 30 und 40 für die gilt: n ≡ 3 mod 10.

Dazu suchen wir erstmal ein Vielfaches von 10 in der Nähe von 30, z.B. 30 = 3 ⋅ 10

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 10 , sondern ≡ 3 mod 10 sein, also addieren wir noch 3 auf die 30 und erhalten so 33.

Somit gilt: 33 ≡ 53 ≡ 3 mod 10.

Modulo addieren

Beispiel:

Berechne ohne WTR: (18002 + 24002) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(18002 + 24002) mod 6 ≡ (18002 mod 6 + 24002 mod 6) mod 6.

18002 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 18002 = 18000+2 = 6 ⋅ 3000 +2.

24002 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 24002 = 24000+2 = 6 ⋅ 4000 +2.

Somit gilt:

(18002 + 24002) mod 6 ≡ (2 + 2) mod 6 ≡ 4 mod 6.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (56 ⋅ 55) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(56 ⋅ 55) mod 6 ≡ (56 mod 6 ⋅ 55 mod 6) mod 6.

56 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 56 = 54 + 2 = 9 ⋅ 6 + 2 ist.

55 mod 6 ≡ 1 mod 6 kann man relativ leicht bestimmen, weil ja 55 = 54 + 1 = 9 ⋅ 6 + 1 ist.

Somit gilt:

(56 ⋅ 55) mod 6 ≡ (2 ⋅ 1) mod 6 ≡ 2 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
30 mod m = 38 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 30 aus, ob zufällig 30 mod m = 38 mod m gilt:

m=2: 30 mod 2 = 0 = 0 = 38 mod 2

m=3: 30 mod 3 = 0 ≠ 2 = 38 mod 3

m=4: 30 mod 4 = 2 = 2 = 38 mod 4

m=5: 30 mod 5 = 0 ≠ 3 = 38 mod 5

m=6: 30 mod 6 = 0 ≠ 2 = 38 mod 6

m=7: 30 mod 7 = 2 ≠ 3 = 38 mod 7

m=8: 30 mod 8 = 6 = 6 = 38 mod 8

m=9: 30 mod 9 = 3 ≠ 2 = 38 mod 9

m=10: 30 mod 10 = 0 ≠ 8 = 38 mod 10

m=11: 30 mod 11 = 8 ≠ 5 = 38 mod 11

m=12: 30 mod 12 = 6 ≠ 2 = 38 mod 12

m=13: 30 mod 13 = 4 ≠ 12 = 38 mod 13

m=14: 30 mod 14 = 2 ≠ 10 = 38 mod 14

m=15: 30 mod 15 = 0 ≠ 8 = 38 mod 15

m=16: 30 mod 16 = 14 ≠ 6 = 38 mod 16

m=17: 30 mod 17 = 13 ≠ 4 = 38 mod 17

m=18: 30 mod 18 = 12 ≠ 2 = 38 mod 18

m=19: 30 mod 19 = 11 ≠ 0 = 38 mod 19

m=20: 30 mod 20 = 10 ≠ 18 = 38 mod 20

m=21: 30 mod 21 = 9 ≠ 17 = 38 mod 21

m=22: 30 mod 22 = 8 ≠ 16 = 38 mod 22

m=23: 30 mod 23 = 7 ≠ 15 = 38 mod 23

m=24: 30 mod 24 = 6 ≠ 14 = 38 mod 24

m=25: 30 mod 25 = 5 ≠ 13 = 38 mod 25

m=26: 30 mod 26 = 4 ≠ 12 = 38 mod 26

m=27: 30 mod 27 = 3 ≠ 11 = 38 mod 27

m=28: 30 mod 28 = 2 ≠ 10 = 38 mod 28

m=29: 30 mod 29 = 1 ≠ 9 = 38 mod 29

m=30: 30 mod 30 = 0 ≠ 8 = 38 mod 30

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (38 - 30) = 8 bestimmen:

die gesuchten Zahlen sind somit:

2; 4; 8