Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 54 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 50, weil ja 5 ⋅ 10 = 50 ist.

Also bleibt als Rest eben noch 54 - 50 = 4.

Somit gilt: 54 mod 10 ≡ 4.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 10 und 19 für die gilt n ≡ 29 mod 7.

Lösung einblenden

Das nächst kleinere Vielfache von 7 ist 28, weil ja 4 ⋅ 7 = 28 ist.

Also bleibt als Rest eben noch 29 - 28 = 1.

Somit gilt: 29 mod 7 ≡ 1.

Wir suchen also eine Zahl zwischen 10 und 19 für die gilt: n ≡ 1 mod 7.

Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 10, z.B. 14 = 2 ⋅ 7

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 1 mod 7 sein, also addieren wir noch 1 auf die 14 und erhalten so 15.

Somit gilt: 15 ≡ 29 ≡ 1 mod 7.

Modulo addieren

Beispiel:

Berechne ohne WTR: (2997 - 1498) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(2997 - 1498) mod 3 ≡ (2997 mod 3 - 1498 mod 3) mod 3.

2997 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 2997 = 3000-3 = 3 ⋅ 1000 -3 = 3 ⋅ 1000 - 3 + 0.

1498 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 1498 = 1500-2 = 3 ⋅ 500 -2 = 3 ⋅ 500 - 3 + 1.

Somit gilt:

(2997 - 1498) mod 3 ≡ (0 - 1) mod 3 ≡ -1 mod 3 ≡ 2 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (78 ⋅ 41) mod 8.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(78 ⋅ 41) mod 8 ≡ (78 mod 8 ⋅ 41 mod 8) mod 8.

78 mod 8 ≡ 6 mod 8 kann man relativ leicht bestimmen, weil ja 78 = 72 + 6 = 9 ⋅ 8 + 6 ist.

41 mod 8 ≡ 1 mod 8 kann man relativ leicht bestimmen, weil ja 41 = 40 + 1 = 5 ⋅ 8 + 1 ist.

Somit gilt:

(78 ⋅ 41) mod 8 ≡ (6 ⋅ 1) mod 8 ≡ 6 mod 8.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
21 mod m = 30 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 21 aus, ob zufällig 21 mod m = 30 mod m gilt:

m=2: 21 mod 2 = 1 ≠ 0 = 30 mod 2

m=3: 21 mod 3 = 0 = 0 = 30 mod 3

m=4: 21 mod 4 = 1 ≠ 2 = 30 mod 4

m=5: 21 mod 5 = 1 ≠ 0 = 30 mod 5

m=6: 21 mod 6 = 3 ≠ 0 = 30 mod 6

m=7: 21 mod 7 = 0 ≠ 2 = 30 mod 7

m=8: 21 mod 8 = 5 ≠ 6 = 30 mod 8

m=9: 21 mod 9 = 3 = 3 = 30 mod 9

m=10: 21 mod 10 = 1 ≠ 0 = 30 mod 10

m=11: 21 mod 11 = 10 ≠ 8 = 30 mod 11

m=12: 21 mod 12 = 9 ≠ 6 = 30 mod 12

m=13: 21 mod 13 = 8 ≠ 4 = 30 mod 13

m=14: 21 mod 14 = 7 ≠ 2 = 30 mod 14

m=15: 21 mod 15 = 6 ≠ 0 = 30 mod 15

m=16: 21 mod 16 = 5 ≠ 14 = 30 mod 16

m=17: 21 mod 17 = 4 ≠ 13 = 30 mod 17

m=18: 21 mod 18 = 3 ≠ 12 = 30 mod 18

m=19: 21 mod 19 = 2 ≠ 11 = 30 mod 19

m=20: 21 mod 20 = 1 ≠ 10 = 30 mod 20

m=21: 21 mod 21 = 0 ≠ 9 = 30 mod 21

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (30 - 21) = 9 bestimmen:

die gesuchten Zahlen sind somit:

3; 9