Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 21 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 20, weil ja 5 ⋅ 4 = 20 ist.

Also bleibt als Rest eben noch 21 - 20 = 1.

Somit gilt: 21 mod 4 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 40 und 50 für die gilt n ≡ 96 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 90, weil ja 9 ⋅ 10 = 90 ist.

Also bleibt als Rest eben noch 96 - 90 = 6.

Somit gilt: 96 mod 10 ≡ 6.

Wir suchen also eine Zahl zwischen 40 und 50 für die gilt: n ≡ 6 mod 10.

Dazu suchen wir erstmal ein Vielfaches von 10 in der Nähe von 40, z.B. 40 = 4 ⋅ 10

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 10 , sondern ≡ 6 mod 10 sein, also addieren wir noch 6 auf die 40 und erhalten so 46.

Somit gilt: 46 ≡ 96 ≡ 6 mod 10.

Modulo addieren

Beispiel:

Berechne ohne WTR: (160 + 12002) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(160 + 12002) mod 4 ≡ (160 mod 4 + 12002 mod 4) mod 4.

160 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 160 = 160+0 = 4 ⋅ 40 +0.

12002 mod 4 ≡ 2 mod 4 kann man relativ leicht bestimmen, weil ja 12002 = 12000+2 = 4 ⋅ 3000 +2.

Somit gilt:

(160 + 12002) mod 4 ≡ (0 + 2) mod 4 ≡ 2 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (27 ⋅ 97) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(27 ⋅ 97) mod 4 ≡ (27 mod 4 ⋅ 97 mod 4) mod 4.

27 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 27 = 24 + 3 = 6 ⋅ 4 + 3 ist.

97 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 97 = 96 + 1 = 24 ⋅ 4 + 1 ist.

Somit gilt:

(27 ⋅ 97) mod 4 ≡ (3 ⋅ 1) mod 4 ≡ 3 mod 4.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
9 mod m = 13 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 9 aus, ob zufällig 9 mod m = 13 mod m gilt:

m=2: 9 mod 2 = 1 = 1 = 13 mod 2

m=3: 9 mod 3 = 0 ≠ 1 = 13 mod 3

m=4: 9 mod 4 = 1 = 1 = 13 mod 4

m=5: 9 mod 5 = 4 ≠ 3 = 13 mod 5

m=6: 9 mod 6 = 3 ≠ 1 = 13 mod 6

m=7: 9 mod 7 = 2 ≠ 6 = 13 mod 7

m=8: 9 mod 8 = 1 ≠ 5 = 13 mod 8

m=9: 9 mod 9 = 0 ≠ 4 = 13 mod 9

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (13 - 9) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4