Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 22 mod 8.
Das nächst kleinere Vielfache von 8 ist 16, weil ja 2 ⋅ 8 = 16 ist.
Also bleibt als Rest eben noch 22 - 16 = 6.
Somit gilt: 22 mod 8 ≡ 6.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 40 und 49 für die gilt n ≡ 98 mod 5.
Das nächst kleinere Vielfache von 5 ist 95, weil ja 19 ⋅ 5 = 95 ist.
Also bleibt als Rest eben noch 98 - 95 = 3.
Somit gilt: 98 mod 5 ≡ 3.
Wir suchen also eine Zahl zwischen 40 und 49 für die gilt: n ≡ 3 mod 5.
Dazu suchen wir erstmal ein Vielfaches von 5 in der Nähe von 40, z.B. 40 = 8 ⋅ 5
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 5 , sondern ≡ 3 mod 5 sein, also addieren wir noch 3 auf die 40 und erhalten so 43.
Somit gilt: 43 ≡ 98 ≡ 3 mod 5.
Modulo addieren
Beispiel:
Berechne ohne WTR: (794 + 312) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(794 + 312) mod 8 ≡ (794 mod 8 + 312 mod 8) mod 8.
794 mod 8 ≡ 2 mod 8 kann man relativ leicht bestimmen, weil ja 794
= 800
312 mod 8 ≡ 0 mod 8 kann man relativ leicht bestimmen, weil ja 312
= 320
Somit gilt:
(794 + 312) mod 8 ≡ (2 + 0) mod 8 ≡ 2 mod 8.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (48 ⋅ 70) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(48 ⋅ 70) mod 3 ≡ (48 mod 3 ⋅ 70 mod 3) mod 3.
48 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 48 = 48 + 0 = 16 ⋅ 3 + 0 ist.
70 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 70 = 69 + 1 = 23 ⋅ 3 + 1 ist.
Somit gilt:
(48 ⋅ 70) mod 3 ≡ (0 ⋅ 1) mod 3 ≡ 0 mod 3.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 18 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 18 mod m gilt:
m=2: 12 mod 2 = 0 = 0 = 18 mod 2
m=3: 12 mod 3 = 0 = 0 = 18 mod 3
m=4: 12 mod 4 = 0 ≠ 2 = 18 mod 4
m=5: 12 mod 5 = 2 ≠ 3 = 18 mod 5
m=6: 12 mod 6 = 0 = 0 = 18 mod 6
m=7: 12 mod 7 = 5 ≠ 4 = 18 mod 7
m=8: 12 mod 8 = 4 ≠ 2 = 18 mod 8
m=9: 12 mod 9 = 3 ≠ 0 = 18 mod 9
m=10: 12 mod 10 = 2 ≠ 8 = 18 mod 10
m=11: 12 mod 11 = 1 ≠ 7 = 18 mod 11
m=12: 12 mod 12 = 0 ≠ 6 = 18 mod 12
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (18 - 12) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
