Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 23 mod 10.
Das nächst kleinere Vielfache von 10 ist 20, weil ja 2 ⋅ 10 = 20 ist.
Also bleibt als Rest eben noch 23 - 20 = 3.
Somit gilt: 23 mod 10 ≡ 3.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 70 und 79 für die gilt n ≡ 46 mod 9.
Das nächst kleinere Vielfache von 9 ist 45, weil ja 5 ⋅ 9 = 45 ist.
Also bleibt als Rest eben noch 46 - 45 = 1.
Somit gilt: 46 mod 9 ≡ 1.
Wir suchen also eine Zahl zwischen 70 und 79 für die gilt: n ≡ 1 mod 9.
Dazu suchen wir erstmal ein Vielfaches von 9 in der Nähe von 70, z.B. 72 = 8 ⋅ 9
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 9 , sondern ≡ 1 mod 9 sein, also addieren wir noch 1 auf die 72 und erhalten so 73.
Somit gilt: 73 ≡ 46 ≡ 1 mod 9.
Modulo addieren
Beispiel:
Berechne ohne WTR: (1600 + 797) mod 4.
Um längere Rechnungen zu vermeiden, rechnen wir:
(1600 + 797) mod 4 ≡ (1600 mod 4 + 797 mod 4) mod 4.
1600 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 1600
= 1600
797 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 797
= 700
Somit gilt:
(1600 + 797) mod 4 ≡ (0 + 1) mod 4 ≡ 1 mod 4.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (49 ⋅ 52) mod 5.
Um längere Rechnungen zu vermeiden, rechnen wir:
(49 ⋅ 52) mod 5 ≡ (49 mod 5 ⋅ 52 mod 5) mod 5.
49 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 49 = 45 + 4 = 9 ⋅ 5 + 4 ist.
52 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 52 = 50 + 2 = 10 ⋅ 5 + 2 ist.
Somit gilt:
(49 ⋅ 52) mod 5 ≡ (4 ⋅ 2) mod 5 ≡ 8 mod 5 ≡ 3 mod 5.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 16 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 16 mod m gilt:
m=2: 12 mod 2 = 0 = 0 = 16 mod 2
m=3: 12 mod 3 = 0 ≠ 1 = 16 mod 3
m=4: 12 mod 4 = 0 = 0 = 16 mod 4
m=5: 12 mod 5 = 2 ≠ 1 = 16 mod 5
m=6: 12 mod 6 = 0 ≠ 4 = 16 mod 6
m=7: 12 mod 7 = 5 ≠ 2 = 16 mod 7
m=8: 12 mod 8 = 4 ≠ 0 = 16 mod 8
m=9: 12 mod 9 = 3 ≠ 7 = 16 mod 9
m=10: 12 mod 10 = 2 ≠ 6 = 16 mod 10
m=11: 12 mod 11 = 1 ≠ 5 = 16 mod 11
m=12: 12 mod 12 = 0 ≠ 4 = 16 mod 12
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (16 - 12) = 4 bestimmen:
die gesuchten Zahlen sind somit:
2; 4
