Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 19 mod 11.
Das nächst kleinere Vielfache von 11 ist 11, weil ja 1 ⋅ 11 = 11 ist.
Also bleibt als Rest eben noch 19 - 11 = 8.
Somit gilt: 19 mod 11 ≡ 8.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 10 und 19 für die gilt n ≡ 59 mod 5.
Das nächst kleinere Vielfache von 5 ist 55, weil ja 11 ⋅ 5 = 55 ist.
Also bleibt als Rest eben noch 59 - 55 = 4.
Somit gilt: 59 mod 5 ≡ 4.
Wir suchen also eine Zahl zwischen 10 und 19 für die gilt: n ≡ 4 mod 5.
Dazu suchen wir erstmal ein Vielfaches von 5 in der Nähe von 10, z.B. 10 = 2 ⋅ 5
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 5 , sondern ≡ 4 mod 5 sein, also addieren wir noch 4 auf die 10 und erhalten so 14.
Somit gilt: 14 ≡ 59 ≡ 4 mod 5.
Modulo addieren
Beispiel:
Berechne ohne WTR: (404 - 159) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(404 - 159) mod 8 ≡ (404 mod 8 - 159 mod 8) mod 8.
404 mod 8 ≡ 4 mod 8 kann man relativ leicht bestimmen, weil ja 404
= 400
159 mod 8 ≡ 7 mod 8 kann man relativ leicht bestimmen, weil ja 159
= 160
Somit gilt:
(404 - 159) mod 8 ≡ (4 - 7) mod 8 ≡ -3 mod 8 ≡ 5 mod 8.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (48 ⋅ 40) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(48 ⋅ 40) mod 3 ≡ (48 mod 3 ⋅ 40 mod 3) mod 3.
48 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 48 = 48 + 0 = 16 ⋅ 3 + 0 ist.
40 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 40 = 39 + 1 = 13 ⋅ 3 + 1 ist.
Somit gilt:
(48 ⋅ 40) mod 3 ≡ (0 ⋅ 1) mod 3 ≡ 0 mod 3.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
59 mod m = 74 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 59 aus, ob zufällig 59 mod m = 74 mod m gilt:
m=2: 59 mod 2 = 1 ≠ 0 = 74 mod 2
m=3: 59 mod 3 = 2 = 2 = 74 mod 3
m=4: 59 mod 4 = 3 ≠ 2 = 74 mod 4
m=5: 59 mod 5 = 4 = 4 = 74 mod 5
m=6: 59 mod 6 = 5 ≠ 2 = 74 mod 6
m=7: 59 mod 7 = 3 ≠ 4 = 74 mod 7
m=8: 59 mod 8 = 3 ≠ 2 = 74 mod 8
m=9: 59 mod 9 = 5 ≠ 2 = 74 mod 9
m=10: 59 mod 10 = 9 ≠ 4 = 74 mod 10
m=11: 59 mod 11 = 4 ≠ 8 = 74 mod 11
m=12: 59 mod 12 = 11 ≠ 2 = 74 mod 12
m=13: 59 mod 13 = 7 ≠ 9 = 74 mod 13
m=14: 59 mod 14 = 3 ≠ 4 = 74 mod 14
m=15: 59 mod 15 = 14 = 14 = 74 mod 15
m=16: 59 mod 16 = 11 ≠ 10 = 74 mod 16
m=17: 59 mod 17 = 8 ≠ 6 = 74 mod 17
m=18: 59 mod 18 = 5 ≠ 2 = 74 mod 18
m=19: 59 mod 19 = 2 ≠ 17 = 74 mod 19
m=20: 59 mod 20 = 19 ≠ 14 = 74 mod 20
m=21: 59 mod 21 = 17 ≠ 11 = 74 mod 21
m=22: 59 mod 22 = 15 ≠ 8 = 74 mod 22
m=23: 59 mod 23 = 13 ≠ 5 = 74 mod 23
m=24: 59 mod 24 = 11 ≠ 2 = 74 mod 24
m=25: 59 mod 25 = 9 ≠ 24 = 74 mod 25
m=26: 59 mod 26 = 7 ≠ 22 = 74 mod 26
m=27: 59 mod 27 = 5 ≠ 20 = 74 mod 27
m=28: 59 mod 28 = 3 ≠ 18 = 74 mod 28
m=29: 59 mod 29 = 1 ≠ 16 = 74 mod 29
m=30: 59 mod 30 = 29 ≠ 14 = 74 mod 30
m=31: 59 mod 31 = 28 ≠ 12 = 74 mod 31
m=32: 59 mod 32 = 27 ≠ 10 = 74 mod 32
m=33: 59 mod 33 = 26 ≠ 8 = 74 mod 33
m=34: 59 mod 34 = 25 ≠ 6 = 74 mod 34
m=35: 59 mod 35 = 24 ≠ 4 = 74 mod 35
m=36: 59 mod 36 = 23 ≠ 2 = 74 mod 36
m=37: 59 mod 37 = 22 ≠ 0 = 74 mod 37
m=38: 59 mod 38 = 21 ≠ 36 = 74 mod 38
m=39: 59 mod 39 = 20 ≠ 35 = 74 mod 39
m=40: 59 mod 40 = 19 ≠ 34 = 74 mod 40
m=41: 59 mod 41 = 18 ≠ 33 = 74 mod 41
m=42: 59 mod 42 = 17 ≠ 32 = 74 mod 42
m=43: 59 mod 43 = 16 ≠ 31 = 74 mod 43
m=44: 59 mod 44 = 15 ≠ 30 = 74 mod 44
m=45: 59 mod 45 = 14 ≠ 29 = 74 mod 45
m=46: 59 mod 46 = 13 ≠ 28 = 74 mod 46
m=47: 59 mod 47 = 12 ≠ 27 = 74 mod 47
m=48: 59 mod 48 = 11 ≠ 26 = 74 mod 48
m=49: 59 mod 49 = 10 ≠ 25 = 74 mod 49
m=50: 59 mod 50 = 9 ≠ 24 = 74 mod 50
m=51: 59 mod 51 = 8 ≠ 23 = 74 mod 51
m=52: 59 mod 52 = 7 ≠ 22 = 74 mod 52
m=53: 59 mod 53 = 6 ≠ 21 = 74 mod 53
m=54: 59 mod 54 = 5 ≠ 20 = 74 mod 54
m=55: 59 mod 55 = 4 ≠ 19 = 74 mod 55
m=56: 59 mod 56 = 3 ≠ 18 = 74 mod 56
m=57: 59 mod 57 = 2 ≠ 17 = 74 mod 57
m=58: 59 mod 58 = 1 ≠ 16 = 74 mod 58
m=59: 59 mod 59 = 0 ≠ 15 = 74 mod 59
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (74 - 59) = 15 bestimmen:
die gesuchten Zahlen sind somit:
3; 5; 15
