Aufgabenbeispiele von Funktionsterm bestimmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term bestimmen (1 Punktprobe)

Beispiel:

Ein Graph einer Exponentialfunktion f mit f(x)= a x (a>0) verläuft durch den Punkt P(1|4). Bestimme a.

Lösung einblenden

Wir setzen einfach den Punkt A(1|4) in den Funktionsterm f(x)= a x ein und erhalten so die Gleichung:

4 = a1

4 = a

Das gesuchte a ist somit 4 (Der gesuchte Funktionsterm f(x)= 4 x )

Term bestimmen (2 Punktproben)

Beispiel:

Bestimme c und a>0 so, dass die Punkte A(1|4 ) und B(-4| 1 8 ) auf dem Graphen der Funktion f mit f(x)= c · a x (a>0) liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1|4 ) und B(-4| 1 8 ) in den Funktionsterm f(x)= c · a x ein und erhalten so die beiden Gleichungen:

I: 4 = c · a
II: 1 8 = c · a -4

Wenn wir I mit a durchdividieren, erhalten wir

I: 4 1 a = c.

Dies können wir gleich in II einsetzen und nach a auflösen:

II: 1 8 = 4 a · 1 a 4

also

II: 1 8 = 4 a 5

D=R\{0}

Wir multiplizieren den Nenner x 5 weg!

4 a 5 = 1 8 |⋅( x 5 )
4 a 5 · a 5 = 1 8 · a 5
4 = 1 8 a 5
4 = 1 8 a 5 | -4 - 1 8 a 5
- 1 8 a 5 = -4 |⋅ ( -8 )
a 5 = 32 | 5
a = 32 5 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

Von oben (I) wissen wir bereits: 4 1 a = c

mit a=2 eingesetzt erhalten wir so: 2 = c

Der gesuchte Funktionsterm g(x) ist somit: f(x)= 2 2 x

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0|1), also git f(0)=1.

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: 1 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = 1 , also f(x)= a x .

Außerdem können wir den Punkt (1|4) auf dem Graphen ablesen, also git f(1) = 4.

In unseren Funktionsterm f(x)= a x eingesezt bedeutet das: 4 = a 1 = a .

Es gilt also: 4 = a

Somit ist der Funtionsterm: f(x)= 4 x