Aufgabenbeispiele von Termbestimmung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Termbestimmung mit Punktproben

Beispiel:

Bestimme a und n so, dass die Punkte A(1|-1) und B(-3|27 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1|-1) und B(-3|27 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: -1 = a · 1 n
II: 27 = a · (-3) n

Aus I ergibt sich ja sofort -1 = a. Dies können wir gleich in II einsetzen:

II: 27 = - (-3) n | ⋅ ( -1 )

-27 = (-3) n

Durch Ausprobieren mit ganzzahligen n erhält man so n=3

Der gesuchte Funktionsterm ist somit: f(x)= - x 3

Termbestimmung mit Punktproben II

Beispiel:

Bestimme a und n so, dass die Punkte A(2|-8 ) und B(6|-216 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(2|-8 ) und B(6|-216 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: -8 = a · 2 n
II: -216 = a · 6 n

Jetzt lösen wir mal die beide Gleichungen nach a auf:

I: -8 2 n = a
II: -216 6 n = a

Da in beiden Gleichungen die Terme links =a sind, können wir diese gleichsetzen:

-8 2 n = -216 6 n | ⋅ 2 n 6 n

-8 6 n = -216 2 n

Jetzt muss man eben erkennen, dass 6 n = ( 32 ) n = 3 n 2 n ist.

-8 · 3 n · 2 n = -216 2 n | : 2 n

-8 3 n = -216 | :-8

3 n = 27

Durch Ausprobieren mit ganzzahligen n erhält man so n=3

n=3 eingesetzt in I:

I: -8 = a · 2 3

I: -8 = 8a | ⋅ 1 8

also a=-1

Der gesuchte Funktionsterm ist somit: f(x)= - x 3