Aufgabenbeispiele von Verschiebung / Streckung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Verschiebung am Graph erkennen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 5 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in x-Richtung verschoben wurde, und zwar um 3 nach rechts. Der gesuchte Funktionsterm ist also g(x)= ( x -3 ) 5

Verschiebung am Graph erkennen II

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 4 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Hinweis: Die beiden Graphen sind deckungsgleich.

Lösung einblenden

Man erkennt sofort, dass der rote Graph an der x-Achse gespiegelt (oder eben mit dem Streckfaktor -1 in y-Richtung gestreckt) wurde. Vor dem gesuchten Term muss also ein '-' stehen.

Außerdem erkennt man eine Verschiebung um 1 nach links, bzw. -1 nach rechts, was bedeutet dass statt den Funktionswerten von x die von (x - ( - 1 )) berechnet werden, also das man im Funktionsterm x durch (x-( - 1 )) ersetzt.

Somit erhält man für den gesuchten Funktionsterm g(x)= - ( x +1 ) 4 .

Verschiebung am Term erkennen

Beispiel:

Beschreibe, wie der Graph von g mit g(x)= -3 x 3 +3 aus dem Graph von f mit f(x)= x 3 entsteht.

Lösung einblenden

Hinter dem Potenzterm steht noch eine 3. Das bedeutet, dass zu jedem Funktionswert noch 3 dazu addiert wird. Also wird der Graph von g um 3 nach oben verschoben.

Die -3 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor -3 multipliziert werden. Dadurch wird der Graph um -3 gestreckt. (das negative Vorzeichen von -3 ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)

Term aus Verschiebung (Streck.) bestimmen

Beispiel:

Der Graph von f mit f(x)= x 4 wird um den Faktor 1 4 in y-Richtung gestreckt und an der x-Achse gespiegelt und um 3 nach rechts verschoben.

Bestimme den Funktionsterm g(x) des neuen Graphen.

Lösung einblenden

Bei der Verschiebung um 3 nach rechts wird jedes 'x' durch (x -3) ersetzt.

Die Streckung um den Faktor 1 4 in y-Richtung erreicht man durch den Koeffizienten 1 4 vor der Potenz.

Die Spiegelung an der x-Achse bekommt man durch ein negatives Vorzeichen bei dem Koeffizienten vor der Potenz, also - 1 4 .

Der gesuchte Funktionsterm g(x) ist somit: g(x)= - 1 4 ( x -3 ) 4