Aufgabenbeispiele von Funktionsbegriff
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
y-Wert aus Schaubild ablesen
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x=0 der (in der Abblidung rechts rote) Punkt (0|f(0)) auf der Höhe y=-2 liegt.
Größenvergleich bei Potenzfunktionen
Beispiel:
Gegeben sind die Funktionen f mit f(x)= , g mit g(x)= , h mit h(x)= .
Sortiere die drei Funktionswerte f(-1.7), g(1.7) und h(1.7), ohne sie wirklich auszurechnen.
Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).
Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:
- f(-1.7) = > 0
- g(1.7) = > 0
- h(1.7) = > 0
Da alle Werte positiv sind, schauen wir nur auf die Beträge:
Und weil 1.7 > 1 ist, werden die Werte natürlich mit jeder Potenz immer größer. Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und
h(x)=x4 in rot),
aber auch direkt an den Zahlen:
1.73 =1.72 ⋅ 1.7 bzw. 1.74 =1.73 ⋅ 1.7.
Die richtige Reihenfolge ist also:
f(-1.7)=
< g(1.7)=
< h(1.7)=
.
x-Wert am Graph ablesen
Beispiel:
Da die Funktionswerte f(x) immer auf der y-Achse abgetragen werden, muss der gesuchte Punkt auf dem Graph 3.7 unter der x-Achse liegen. Alle Punkte mit dieser Eigenschaft sind durch die blaue Gerade im Schaubild veranschaulicht.
So erkennt man nun, dass z.B. an der Stelle x = 0 gerade ein (in der Abblidung rechts roter) Punkt auf dem Graph liegt, der als y-Wert ( und damit als Funktionswert f(x)) -3.7 hat.
Also ist beispielweise bei x = 0 solch eine Stelle mit f(0) = -3.7.
Funktionswerte berechnen
Beispiel:
Gegeben ist die Funktion f mit f(x)= . Berechne den Funktionswert f(2).
Wir setzen 2 einfach für x in f(x)= ein:
f(2) =
=
=
=
=
