Aufgabenbeispiele von Funktionsbegriff
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
y-Wert aus Schaubild ablesen
Beispiel:
Aus der Zeichnung kann man erkennen, dass an der Stelle x=-2 der (in der Abblidung rechts rote) Punkt (-2|f(-2)) auf der Höhe y=2.1 liegt.
Größenvergleich bei Potenzfunktionen
Beispiel:
Gegeben sind die Funktionen f mit f(x)= , g mit g(x)= , h mit h(x)= .
Sortiere die drei Funktionswerte f(0.5), -g(0.5) und -h(-0.5), ohne sie wirklich auszurechnen.
Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).
Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:
- f(0.5) = > 0
- -g(0.5) = - < 0
- -h(-0.5) = - < 0
Da f(0.5) der einzige positive Funktionswert ist, muss dieser also der größte sein.
Und weil die anderen beiden Werte negativ sind, schauen wir zunächst nur auf die Beträge:
Dabei gilt -g(0.5) < -h(-0.5). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und
h(x)=x4 in rot),
aber auch direkt an den Zahlen:
0.54 =0.53 ⋅ 0.5, d.h. 0.54 < 0.53, also gilt - 0.54 > - 0.53.
Die richtige Reihenfolge ist also:
-g(0.5)= -
< -h(-0.5)= -
< f(0.5)=
.
x-Wert am Graph ablesen
Beispiel:
Da die Funktionswerte f(x) immer auf der y-Achse abgetragen werden, muss der gesuchte Punkt auf dem Graph 2 unter der x-Achse liegen. Alle Punkte mit dieser Eigenschaft sind durch die blaue Gerade im Schaubild veranschaulicht.
So erkennt man nun, dass z.B. an der Stelle x = 0 gerade ein (in der Abblidung rechts roter) Punkt auf dem Graph liegt, der als y-Wert ( und damit als Funktionswert f(x)) -2 hat.
Also ist beispielweise bei x = 0 solch eine Stelle mit f(0) = -2.
Funktionswerte berechnen
Beispiel:
Gegeben ist die Funktion f mit f(x)= . Berechne den Funktionswert f(-1).
Wir setzen -1 einfach für x in f(x)= ein:
f(-1) =
=
=
=
=
=