Aufgabenbeispiele von vermischte Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= e 3x +3 e x und g(x)= 28 e -x . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

e 3x +3 e x = 28 e -x | -28 e -x
e 3x +3 e x -28 e -x = 0
( e 4x +3 e 2x -28 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 4x +3 e 2x -28 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -28 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 1 · ( -28 ) 21

u1,2 = -3 ± 9 +112 2

u1,2 = -3 ± 121 2

u1 = -3 + 121 2 = -3 +11 2 = 8 2 = 4

u2 = -3 - 121 2 = -3 -11 2 = -14 2 = -7

Rücksubstitution:

u1: e 2x = 4

e 2x = 4 |ln(⋅)
2x = ln( 4 ) |:2
x1 = 1 2 ln( 4 ) ≈ 0.6931
x1 = ln( 2 )

u2: e 2x = -7

e 2x = -7

Diese Gleichung hat keine Lösung!


2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 2 ) }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = ln( 2 ) : f( ln( 2 ) )= 28 e -( ln( 2 ) ) = 14 Somit gilt: S1( ln( 2 ) |14)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 5 x 5 - 2 3 x 3 parallel zur Geraden y = -x +1 sind.

Lösung einblenden

Für die Steigung der Geraden y = -x +1 gilt m = -1

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 5 x 5 - 2 3 x 3

f'(x)= x 4 -2 x 2

Also muss gelten:

x 4 -2 x 2 = -1 | +1
x 4 -2 x 2 +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = 1

x 2 = 1 | 2
x3 = - 1 = -1
x4 = 1 = 1

L={ -1 ; 1 }

-1 ist 2-fache Lösung! 1 ist 2-fache Lösung!

An diesen Stellen haben somit die Tangenten an f die Steigung -1 und sind somit parallel zur Geraden y = -x +1 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

e 6x -8 e 3x +7 = 0

Lösung einblenden
e 6x -8 e 3x +7 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 -8u +7 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +8 ± ( -8 ) 2 -4 · 1 · 7 21

u1,2 = +8 ± 64 -28 2

u1,2 = +8 ± 36 2

u1 = 8 + 36 2 = 8 +6 2 = 14 2 = 7

u2 = 8 - 36 2 = 8 -6 2 = 2 2 = 1

Rücksubstitution:

u1: e 3x = 7

e 3x = 7 |ln(⋅)
3x = ln( 7 ) |:3
x1 = 1 3 ln( 7 ) ≈ 0.6486

u2: e 3x = 1

e 3x = 1 |ln(⋅)
3x = 0 |:3
x2 = 0 ≈ 0

L={0; 1 3 ln( 7 ) }

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

4x x +2 -2 = 0

Lösung einblenden

D=R\{ -2 }

Wir multiplizieren den Nenner x +2 weg!

4x x +2 -2 = 0 |⋅( x +2 )
4x x +2 · ( x +2 ) -2 · ( x +2 ) = 0
4x -2x -4 = 0
2x -4 = 0
2x -4 = 0 | +4
2x = 4 |:2
x = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 2 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

2 x 3 -7 x 2 -27x -18 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von 2 x 3 -7 x 2 -27x -18 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -18 .

-1 ist eine Lösung, denn 2 ( -1 ) 3 -7 ( -1 ) 2 -27( -1 ) -18 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x+1) durch.

( 2 x 3 -7 x 2 -27x -18 ) : (x+1) = 2 x 2 -9x -18
-( 2 x 3 +2 x 2 )
-9 x 2 -27x
-( -9 x 2 -9x )
-18x -18
-( -18x -18 )
0

es gilt also:

2 x 3 -7 x 2 -27x -18 = ( 2 x 2 -9x -18 ) · ( x +1 )

( 2 x 2 -9x -18 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 x 2 -9x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 2 · ( -18 ) 22

x1,2 = +9 ± 81 +144 4

x1,2 = +9 ± 225 4

x1 = 9 + 225 4 = 9 +15 4 = 24 4 = 6

x2 = 9 - 225 4 = 9 -15 4 = -6 4 = -1,5


2. Fall:

x +1 = 0 | -1
x3 = -1

Polynomdivision mit 6

L={ -1,5 ; -1 ; 6 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

| x +2 | -2 = 0

Lösung einblenden
| x +2 | -2 = 0
-2 + | x +2 | = 0 | +2
| x +2 | = 2

1. Fall: x +2 ≥ 0:

x +2 = 2 | -2
x1 = 0

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( x +2 ≥ 0) genügt:

0 +2 = 2 ≥ 0

Die Lösung 0 genügt also der obigen Bedingung.

2. Fall: x +2 < 0:

-( x +2 ) = 2
-x -2 = 2 | +2
-x = 4 |:(-1 )
x2 = -4

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( x +2 < 0) genügt:

-4 +2 = -2 < 0

Die Lösung -4 genügt also der obigen Bedingung.

L={ -4 ; 0}