Aufgabenbeispiele von vermischte Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 7 -8x und g(x)= -7 x 4 . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 7 -8x = -7 x 4 | +7 x 4
x 7 +7 x 4 -8x = 0
x ( x 6 +7 x 3 -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 6 +7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 +7u -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

u1,2 = -7 ± 49 +32 2

u1,2 = -7 ± 81 2

u1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

u2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

Rücksubstitution:

u1: x 3 = 1

x 3 = 1 | 3
x2 = 1 3 = 1

u2: x 3 = -8

x 3 = -8 | 3
x3 = - 8 3 = -2

L={ -2 ; 0; 1 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -2 : f( -2 )= -7 ( -2 ) 4 = -112 Somit gilt: S1( -2 |-112)

x2 = 0: f(0)= -7 0 4 = -0 Somit gilt: S2(0|-0)

x3 = 1 : f( 1 )= -7 1 4 = -7 Somit gilt: S3( 1 |-7)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 7 x 7 - 7 4 x 4 parallel zur Geraden y = 8x -1 sind.

Lösung einblenden

Für die Steigung der Geraden y = 8x -1 gilt m = 8

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 7 x 7 - 7 4 x 4

f'(x)= x 6 -7 x 3

Also muss gelten:

x 6 -7 x 3 = 8 | -8
x 6 -7 x 3 -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 3

Draus ergibt sich die quadratische Gleichung:

u 2 -7u -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +7 ± ( -7 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +7 ± 49 +32 2

u1,2 = +7 ± 81 2

u1 = 7 + 81 2 = 7 +9 2 = 16 2 = 8

u2 = 7 - 81 2 = 7 -9 2 = -2 2 = -1

Rücksubstitution:

u1: x 3 = 8

x 3 = 8 | 3
x1 = 8 3 = 2

u2: x 3 = -1

x 3 = -1 | 3
x2 = - 1 3 = -1

L={ -1 ; 2 }

An diesen Stellen haben somit die Tangenten an f die Steigung 8 und sind somit parallel zur Geraden y = 8x -1 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

( 9 e 3x -3 ) · ( x 2 +6x ) = 0

Lösung einblenden
( 9 e 3x -3 ) ( x 2 +6x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

9 e 3x -3 = 0 | +3
9 e 3x = 3 |:9
e 3x = 1 3 |ln(⋅)
3x = ln( 1 3 ) |:3
x1 = 1 3 ln( 1 3 ) ≈ -0.3662

2. Fall:

x 2 +6x = 0
x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x +6 = 0 | -6
x3 = -6

L={ -6 ; 1 3 ln( 1 3 ) ; 0}

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

3x -1 x -1 -4 = 0

Lösung einblenden

D=R\{ 1 }

Wir multiplizieren den Nenner x -1 weg!

3x -1 x -1 -4 = 0 |⋅( x -1 )
3x -1 x -1 · ( x -1 ) -4 · ( x -1 ) = 0
3x -1 -4x +4 = 0
-x +3 = 0
-x +3 = 0 | -3
-x = -3 |:(-1 )
x = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 3 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

x 3 -2 x 2 +2x -4 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von x 3 -2 x 2 +2x -4 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -4 .

2 ist eine Lösung, denn 2 3 -2 2 2 +22 -4 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-2) durch.

( x 3 -2 x 2 +2x -4 ) : (x-2) = x 2 +0 +2
-( x 3 -2 x 2 )
0 +2x
-(0 0)
2x -4
-( 2x -4 )
0

es gilt also:

x 3 -2 x 2 +2x -4 = ( x 2 +0 +2 ) · ( x -2 )

( x 2 +0 +2 ) · ( x -2 ) = 0
( x 2 +2 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 +2 = 0 | -2
x 2 = -2 | 2

Diese Gleichung hat keine (reele) Lösung!


2. Fall:

x -2 = 0 | +2
x1 = 2

L={ 2 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

1 3 | -2x -2 | +1 = 3

Lösung einblenden
1 3 | -2x -2 | +1 = 3
1 + 1 3 | -2x -2 | = 3 | -1
1 3 | -2x -2 | = 2 |⋅3
| -2x -2 | = 6

1. Fall: -2x -2 ≥ 0:

-2x -2 = 6 | +2
-2x = 8 |:(-2 )
x1 = -4

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( -2x -2 ≥ 0) genügt:

-2( -4 ) -2 = 6 ≥ 0

Die Lösung -4 genügt also der obigen Bedingung.

2. Fall: -2x -2 < 0:

-( -2x -2 ) = 6
2x +2 = 6 | -2
2x = 4 |:2
x2 = 2

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( -2x -2 < 0) genügt:

-22 -2 = -6 < 0

Die Lösung 2 genügt also der obigen Bedingung.

L={ -4 ; 2 }