Aufgabenbeispiele von vermischte Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Schnittpunkte berechnen

Beispiel:

Gegegben sind die Funktionen f und g mit f(x)= x 4 und g(x)= 1 . Bestimme die Schnittpunkte der Graphen.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 4 = 1 | 4
x1 = - 1 4 = -1
x2 = 1 4 = 1

L={ -1 ; 1 }

Damit haben wir die Schnittstellen. Jetzt müssen wir die x-Werte nur noch in einen der beiden Funktionsterme einsetzen:

x1 = -1 : f( -1 )= 1 Somit gilt: S1( -1 |1)

x2 = 1 : f( 1 )= 1 Somit gilt: S2( 1 |1)

Steigung gleichsetzen

Beispiel:

Bestimme alle Stellen, an denen die Tangenten an den Graph von f mit f(x)= 1 4 e 4x + e 2x parallel zur Geraden y = 3x -4 sind.

Lösung einblenden

Für die Steigung der Geraden y = 3x -4 gilt m = 3

Die Steigungen der Tangenten an f können wir mit der Ableitungsfunktion f' berechnen.

f(x)= 1 4 e 4x + e 2x

f'(x)= e 4x +2 e 2x

Also muss gelten:

e 4x +2 e 2x = 3 | -3
e 4x +2 e 2x -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 2x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Rücksubstitution:

u1: e 2x = 1

e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

u2: e 2x = -3

e 2x = -3

Diese Gleichung hat keine Lösung!

L={0}

An diesen Stellen haben somit die Tangenten an f die Steigung 3 und sind somit parallel zur Geraden y = 3x -4 .

vermischte Gleichungen

Beispiel:

Löse die folgende Gleichung:

( -5 e -5x +6 ) · ( x 5 -4 x 3 ) = 0

Lösung einblenden
( -5 e -5x +6 ) ( x 5 -4 x 3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-5 e -5x +6 = 0 | -6
-5 e -5x = -6 |:-5
e -5x = 6 5 |ln(⋅)
-5x = ln( 6 5 ) |:-5
x1 = - 1 5 ln( 6 5 ) ≈ -0.0365

2. Fall:

x 5 -4 x 3 = 0
x 3 ( x 2 -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x2 = 0

2. Fall:

x 2 -4 = 0 | +4
x 2 = 4 | 2
x3 = - 4 = -2
x4 = 4 = 2

L={ -2 ; - 1 5 ln( 6 5 ) ; 0; 2 }

0 ist 3-fache Lösung!

Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

4x 3x -1 -2 = 0

Lösung einblenden

D=R\{ 1 3 }

Wir multiplizieren den Nenner 3x -1 weg!

4x 3x -1 -2 = 0 |⋅( 3x -1 )
4x 3x -1 · ( 3x -1 ) -2 · ( 3x -1 ) = 0
4x -6x +2 = 0
-2x +2 = 0
-2x +2 = 0 | -2
-2x = -2 |:(-2 )
x = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 }

Gleichungen mit Polynomdivision

Beispiel:

Löse die folgende Gleichung:

2 x 3 +9 x 2 + x -12 = 0

Lösung einblenden

Die einzige und letzte Chance, die Lösungen von 2 x 3 +9 x 2 + x -12 = 0 zu bestimmen, ist mit Polynomdivision.
Das funktioniert aber nur, wenn wir eine ganzzahlige Lösung durch Ausprobieren finden.
Dazu testen wir alle Teiler (mit beiden Vorzeichen) des Absolutglieds -12 .

1 ist eine Lösung, denn 2 1 3 +9 1 2 +1 -12 = 0.

Wir führen also eine Polynomdivison mit dem Divisor (x-1) durch.

( 2 x 3 +9 x 2 + x -12 ) : (x-1) = 2 x 2 +11x +12
-( 2 x 3 -2 x 2 )
11 x 2 + x
-( 11 x 2 -11x )
12x -12
-( 12x -12 )
0

es gilt also:

2 x 3 +9 x 2 + x -12 = ( 2 x 2 +11x +12 ) · ( x -1 )

( 2 x 2 +11x +12 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 x 2 +11x +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -11 ± 11 2 -4 · 2 · 12 22

x1,2 = -11 ± 121 -96 4

x1,2 = -11 ± 25 4

x1 = -11 + 25 4 = -11 +5 4 = -6 4 = -1,5

x2 = -11 - 25 4 = -11 -5 4 = -16 4 = -4


2. Fall:

x -1 = 0 | +1
x3 = 1

Polynomdivision mit -4

L={ -4 ; -1,5 ; 1 }

Betragsgleichungen

Beispiel:

Löse die folgende Gleichung:

| -4x +16 | +5 = 9

Lösung einblenden
| -4x +16 | +5 = 9
5 + | -4x +16 | = 9 | -5
| -4x +16 | = 4

1. Fall: -4x +16 ≥ 0:

-4x +16 = 4 | -16
-4x = -12 |:(-4 )
x1 = 3

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( -4x +16 ≥ 0) genügt:

-43 +16 = 4 ≥ 0

Die Lösung 3 genügt also der obigen Bedingung.

2. Fall: -4x +16 < 0:

-( -4x +16 ) = 4
4x -16 = 4 | +16
4x = 20 |:4
x2 = 5

Eigentlich müssen wir jetzt noch überprüfen, ob die Lösung(en) überhaupt der obigen Bedingung bei der Fallunterscheidung ( -4x +16 < 0) genügt:

-45 +16 = -4 < 0

Die Lösung 5 genügt also der obigen Bedingung.

L={ 3 ; 5 }