Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( 2x + 3 2 π) +3 = 3

Lösung einblenden
- cos( 2x + 3 2 π) +3 = 3 | -3
- cos( 2x + 3 2 π) = 0 |:-1
canvas
cos( 2x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 1 2 π

oder

2x + 3 2 π = 1 2 π+2π
2x + 3 2 π = 5 2 π |⋅ 2
2( 2x + 3 2 π) = 5π
4x +3π = 5π | -3π
4x = 2π |:4
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 3 2 π = 3 2 π |⋅ 2
2( 2x + 3 2 π) = 3π
4x +3π = 3π | -3π
4x = 0 |:4
x2 = 0

L={0; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 sin( x + 3 2 π) = 0

Lösung einblenden
-2 sin( x + 3 2 π) = 0 |:-2
canvas
sin( x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 0

oder

x + 3 2 π = 0+2π
x + 3 2 π = 2π |⋅ 2
2( x + 3 2 π) = 4π
2x +3π = 4π | -3π
2x = π |:2
x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x + 3 2 π = π

oder

x + 3 2 π = π+2π
x + 3 2 π = 3π |⋅ 2
2( x + 3 2 π) = 6π
2x +3π = 6π | -3π
2x = 3π |:2
x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -3 sin( x + π) -3 ) · sin( x ) = 0

Lösung einblenden
( -3 sin( x + π) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 sin( x + π) -3 = 0 | +3
-3 sin( x + π) = 3 |:-3
canvas
sin( x + π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x + π = 3 2 π | - π
x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( 3x + 1 2 π) +1 ) · sin( x ) = 0

Lösung einblenden
( cos( 3x + 1 2 π) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( 3x + 1 2 π) +1 = 0 | -1 canvas
cos( 3x + 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + 1 2 π = π |⋅ 2
2( 3x + 1 2 π) = 2π
6x + π = 2π | - π
6x = π |:6
x1 = 1 6 π

Da cos( 3x + 1 2 π) +1 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 1 6 π + 1⋅ 2 3 π = 5 6 π
x3 = 1 6 π + 2⋅ 2 3 π = 3 2 π


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x4 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x5 = π

L={0; 1 6 π ; 5 6 π ; π ; 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

0 ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = 0,5

canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x2 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x3 = 5 3 π

L={0; 1 3 π ; 5 3 π }