Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( x + 1 2 π) +2 = -1

Lösung einblenden
3 cos( x + 1 2 π) +2 = -1 | -2
3 cos( x + 1 2 π) = -3 |:3
canvas
cos( x + 1 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = π |⋅ 2
2( x + 1 2 π) = 2π
2x + π = 2π | - π
2x = π |:2
x = 1 2 π

L={ 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
cos( x - 1 2 π) -2 = -1.75

Lösung einblenden
cos( x - 1 2 π) -2 = -1.75 | +2 canvas
cos( x - 1 2 π) = 0,25 |cos-1(⋅)

Der WTR liefert nun als Wert 1.3181160716528

1. Fall:

x - 1 2 π = 1,318 |⋅ 2
2( x - 1 2 π) = 2,636
2x - π = 2,636 | + π
2x = 2,636 + π
2x = 5,7776 |:2
x1 = 2,8888

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = 0,25 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.25 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,318
bzw. bei - 1,318 +2π= 4,965 liegen muss.

2. Fall:

x - 1 2 π = 4,965

oder

x - 1 2 π = 4,965 -2π |⋅ 2
2x - π = 9,93 -4π | + π
2x = 9,93 -3π
2x = 0,5052 |:2
x2 = 0,2526

L={ 0,2526 ; 2,8888 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) = 0
( cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
2 cos( 2x - π) · sin( x ) = 0

Lösung einblenden
2 cos( 2x - π) · sin( x ) = 0
2 cos( 2x - π) · sin( x ) = 0
2 sin( x ) · cos( 2x - π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

canvas
cos( 2x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - π = 1 2 π | + π
2x = 3 2 π |:2
x3 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x - π = 3 2 π

oder

2x - π = 3 2 π-2π
2x - π = - 1 2 π | + π
2x = 1 2 π |:2
x4 = 1 4 π

Da cos( 2x - π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x5 = 3 4 π + 1⋅ π = 7 4 π , x6 = 1 4 π + 1⋅ π = 5 4 π

L={0; 1 4 π ; 3 4 π ; π ; 5 4 π ; 7 4 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

3 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +5 sin( x ) +4 = 0

Lösung einblenden
( sin( x ) ) 2 +5 sin( x ) +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -5 ± 5 2 -4 · 1 · 4 21

u1,2 = -5 ± 25 -16 2

u1,2 = -5 ± 9 2

u1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

u2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -4

sin( x ) = -4

Diese Gleichung hat keine Lösung!

L={ 3 2 π }