Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(2|0)
- einen Punkt mit waagrechter Tangente bei x = 0
- Verhalten für x → -∞: f(x) → -∞
- Verhalten für x → ∞: f(x) → ∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Der Punkt mit waagrechter Tangente bei x = 0 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.
Als neuen Term erhalten wir somit
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Unser Term = erfüllt nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion lediglich in y-Richtung gestreckt wurde. Qualitativ unterscheiden sich die beiden Graphen also nicht. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden immer größer. Die Funktion ist also streng monoton steigend.
- Wie strebt für x → ∞ auch gegen ∞.
- Wie strebt für x → -∞ auch gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
| = |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
u2:
|
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 41 erreicht?
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→50 - 44 e - 0,5 t 50 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.50 - Erster t-Wert bei y = 41
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=41 annimmt.
Dazu setzen wir die Funktion einfach = 41 und lösen nach t auf:
50 - 44 e - 0,5 t = 41 - 44 e - 0,5 t + 50 = 41 | - 50 - 44 e - 0,5 t = - 9 |: - 44 e - 0,5 t = 9 44 |ln(⋅) - 0,5 t = ln ( 9 44 ) |: - 0,5 t = - 1 0.5 ln ( 9 44 ) ≈ 3.1739 Der erste Zeitpunkt an dem die die Funktion den Wert 41 annimmt, ist also nach 3.17 min.
