Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(-1|0)
- einen Punkt mit waagrechter Tangente bei x = 1
- Schnittpunkt mit der y-Achse: Sy(0|-1)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Der Punkt mit waagrechter Tangente bei x = 1 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.
Als neuen Term erhalten wir somit
Um den y-Achsenabschnitt Sy(0|-1) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Wir müssen somit unseren Term noch mit dem Koeffizienten multiplizieren, damit wir den gegebenen y-Achsenabschnit erhalten:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei einfach das x von durch ein -x ersetzt wurde, erhält man den Graph von indem man den der natürlichen Exponentialfunktion an der y-Achse spiegelt. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer kleiner . Die Funktion ist also streng monoton fallend.
- Wie für x → -∞ strebt für x → ∞ gegen 0.
- Wie für x → ∞ strebt für x → -∞ gegen ∞ .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit
Zu Beginn ist der Baum 3 Dezimeter hoch.
- Bestimme die Wachstumsgeschwindigkeit nach 2 Jahren?
- Wann ist die Wachstumsgeschwindigkeit am größten?
- Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
- y-Wert bei t = 2
Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) =
=4 · 2 2 · e - 0,2 ⋅ 2 ≈ 10.716 e - 0,4
- t-Wert des Maximums (HP)
Gesucht ist der t-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:
Detail-Rechnung für den Hochpunkt (
|54.13) einblenden10 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) =
= 0. Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f(t) →4 · 0 2 · e - 0,2 ⋅ 0 0 .Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.
Bei t =
ist also der größte Wert der Funktion.10
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→4 t 2 · e - 0,2 t 4 ∞ · 0 Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen ∞ bzw. gegen 0 und setzt sich deswegen durch
Das langfristige Verhalten der Funktionswerte geht also gegen
0 .
