Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(0|0)
- Verhalten für x → -∞: f(x) → ∞
- Verhalten für x → ∞: f(x) → 0
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Das Verhalten, dass für x → +∞ : f(x) → 0 strebt und gleichzeitig für x → -∞ : f(x) → ± ∞ strebt, kennen wir doch von e-x.
Also multiplizieren wir einfach mal ein e-x zu unserem bisherigen Term dazu:
. Weil jetzt aber für x → -∞ : f(x) → -∞ streben würde, es ja aber gegen +∞ streben soll, spiegeln wir einfach die Funktion an der x-Achse,
indem wir den Term mit -1 multiplizieren und erhalten so:
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am negativen Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion an der x-Achse gespiegelt (und noch in y-Richtung gestreckt) wurde. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte werden so <0, also verläuft der Graph komplett unter der x-Achse.
- Die Funktionswerte werden zwar (wie bei ) betragsmäßig immer größer, durch das negative Vorzeichen aber immer kleiner. Die Funktion ist also streng monoton fallend.
- Während für x → ∞ auch gegen ∞ strebt, strebt der gespiegelte Term gegen - ∞.
- Wie strebt für x → -∞ auch gegen 0 (nur eben von unten statt von oben).
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x1,2 =
x1,2 =
x1,2 =
Da die Wurzel Null ist, gibt es nur eine Lösung:
x = =
L={ }
ist 2-fache Lösung!
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 3 darf natürlich nicht vergessen werden:
Somit gilt für die faktorisierte Darstellung:
=
Anwendungen
Beispiel:
Eine neue trendy App wird veröffentlicht. Dabei kann die tägliche Downloadzahl (in K) näherungsweise für t ≥ 0 durch die Funktion f mit beschrieben werden; f(t) in Tausend Downloads, t in Tagen nach Beobachtungsbeginn bzw. Veröffentlichung.
- Wie viele Downloads (in Tausend) werden am Tag 2 heruntergeladen?.
- Wann werden die meisten Downloads heruntergeladen?
- Wann nimmt die tägliche Downloadzahl am stärksten ab?
- y-Wert bei t = 2
Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) = = ≈ 13.4
- t-Wert des Maximums (HP)
Gesucht ist der t-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:
Detail-Rechnung für den Hochpunkt (|18.39) einblenden
Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = = 0. Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f(t) →
0 .Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.
Bei t = ist also der größte Wert der Funktion.
- t-Wert bei der stärksten Abnahme
Gesucht ist der t-Wert des Tiefpunkt der Ableitung.
Dazu berechnen wir erstmal die Ableitungsfunktion f':
f'(t)=
=
Wir berechnen also die Extremstellen von f':Detail-Rechnung für den Tiefpunkt der Ableitung (|-1.35) einblenden
Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) = = . Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f'(t) →
0 .Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f'(0) = .
Bei t = ist also der kleinste Wert der Ableitungsfunktion.
