Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsame Punkte mit der x-Achse: N1(1|0) und N2(0|0)
  • Verhalten für x → ∞: f(x) → ∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= ( x -1 ) · ( x +0 ) .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Da unser Term ( x -1 ) x = x 2 - x für x → +∞ gegen +∞ strebt, erfüllt er nun alle geforderten Eigenschaften.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x +1 .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e x +1 einfach das x von e x durch ein 'x+1' ersetzt wurde, wird der Graph der natürlichen Exponentialfunktion einfach um -1 in x-Richtung verschoben . Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
  • Wie e x strebt auch e x +1 für x → ∞ gegen ∞ .
  • Wie e x strebt auch e x +1 für x → -∞ gegen 0 .

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= 2 x 3 -8 x 2 +6x und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

2 x 3 -8 x 2 +6x = 0
2 x ( x 2 -4x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x2,3 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x2,3 = +4 ± 16 -12 2

x2,3 = +4 ± 4 2

x2 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x3 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

L={0; 1 ; 3 }

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:

Somit gilt für die faktorisierte Darstellung:

f(x)= 2 x · ( x -3 ) · ( x -1 ) = 2 x 3 -8 x 2 +6x

Anwendungen

Beispiel:

Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit f(t)= 110 e -0,1t -110 e -0,2t beschrieben werden (t in Jahren nach Beobachtungsbeginn, f(t) in Dezimeter pro Jahr).
Zu Beginn ist der Baum 4 Dezimeter hoch.

  1. Bestimme die Wachstumsgeschwindigkeit nach 2 Jahren?
  2. Wann ist die Wachstumsgeschwindigkeit am größten?
  3. Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
  4. Wann beträgt die Wachstumsgeschwindigkeit erstmals 1488 55 dm pro Jahr?
  5. Wie hoch ist der Baum nach 3 Jahren?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 2

    Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) = 110 e -0,12 -110 e -0,22 = 110 e -0,2 -110 e -0,4 ≈ 16.3


  2. t-Wert des Maximums (HP)

    Gesucht ist der t-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:

    Detail-Rechnung für den Hochpunkt (6.9315|27.5) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = 110 e -0,10 -110 e -0,20 = 0. Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f(t) → 0+0 .

    Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.

    Bei t = 6.9315 ist also der größte Wert der Funktion.


  3. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 110 e -0,1t -110 e -0,2t 0+0

    Das langfristige Verhalten der Funktionswerte geht also gegen 0.

  4. Erster t-Wert bei y = 1488 55

    Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y= 1488 55 annimmt.

    Dazu setzen wir die Funktion einfach = 1488 55 und lösen nach t auf:

    110 e -0,1t -110 e -0,2t = 1488 55 | - 1488 55
    110 e -0,1t -110 e -0,2t - 1488 55 = 0

    Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

    110 e -0,1t -110 e -0,2t - 1488 55 = 0 |⋅ e 0,2x
    - 1488 55 e 0,2t +110 e 0,1t -110 = 0

    Setze u = e 0,1x

    Draus ergibt sich die quadratische Gleichung:

    - 1488 55 u 2 +110u -110 = 0 |⋅ 55
    55( - 1488 55 u 2 +110u -110 ) = 0
    -1488 u 2 +6050u -6050 = 0 |:2

    -744 u 2 +3025u -3025 = 0

    eingesetzt in die Mitternachtsformel (a-b-c-Formel):

    u1,2 = -3025

  5. Bestand zur Zeit 3

    Gesucht ist ja der Bestands zur Zeit t=3 und weil ja f die Änderungsrate des Bestands angibt, kann der Bestands zur Zeit t=3 als Summe vom Anfangsbestand 4 und dem Integral 0 3 ( 110 e -0,1t -110 e -0,2t ) t berechnet werden.

    Wir berechenn also zuerst das Integral:

    0 3 ( 110 e -0,1t -110 e -0,2t ) t

    = [ -1100 e -0,1x +550 e -0,2x ] 0 3

    = -1100 e -0,13 +550 e -0,23 - ( -1100 e -0,10 +550 e -0,20 )

    = -1100 e -0,3 +550 e -0,6 - ( -1100 e 0 +550 e 0 )

    = -1100 e -0,3 +550 e -0,6 - ( -1100 +550 )

    = -1100 e -0,3 +550 e -0,6 -1 · ( -550 )

    = -1100 e -0,3 +550 e -0,6 +550


    ≈ 36,946

    Jetzt haben wir den Zuwachs und müssen nur noch den Anfangsbestand addieren:
    B(3)≈ 4 + 36.946 = 40.946

    40.95 dm ist also der gesuchte Bestand zur Zeit t=3.