Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-1|0) und N2(1|0)
- Schnittpunkt mit der y-Achse: Sy(0|2)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Um den y-Achsenabschnitt Sy(0|2) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Wir müssen somit unseren Term noch mit dem Koeffizienten multiplizieren, damit wir den gegebenen y-Achsenabschnit erhalten:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Und hier wissen wir ja bereits:
- Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Für x → ∞ strebt gegen ∞ .
- Für x → - ∞ strebt gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x1,2 =
x1,2 =
x1,2 =
Da die Wurzel Null ist, gibt es nur eine Lösung:
x = =
L={ }
ist 2-fache Lösung!
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Somit gilt für die faktorisierte Darstellung:
=
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit beschrieben werden; f(t) in °C, t in Minuten nach Beobachtungsbeginn.
- Bestimme die Temperatur des Getränks 2 Minuten nach Beobachtungsbeginn.
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 33 erreicht?
- y-Wert bei t = 2
Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) = = ≈ 32.4
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)= →
Das langfristige Verhalten der Funktionswerte geht also gegen .
- Erster t-Wert bei y = 33
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=33 annimmt.
Dazu setzen wir die Funktion einfach = 33 und lösen nach t auf:
= = | = |: = |ln(⋅) = |: = ≈ 2.1258 Der erste Zeitpunkt an dem die die Funktion den Wert 33 annimmt, ist also nach 2.13 min.
