Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(-1|0)
  • einen Punkt mit waagrechter Tangente bei x = 0
  • Verhalten für x → -∞: f(x) → -∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +1 .

Der Punkt mit waagrechter Tangente bei x = 0 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.

Als neuen Term erhalten wir somit f(x)= ( x +1 ) · ( x +0 ) 2

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Da unser Term ( x +1 ) x 2 = x 3 + x 2 für x → -∞ gegen -∞ strebt, erfüllt er nun alle geforderten Eigenschaften.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= -2 e x .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Am negativen Koeffizient vor dem e x erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion an der x-Achse gespiegelt (und noch in y-Richtung gestreckt) wurde. Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte werden so <0, also verläuft der Graph komplett unter der x-Achse.
  • Die Funktionswerte werden zwar (wie bei e x ) betragsmäßig immer größer, durch das negative Vorzeichen aber immer kleiner. Die Funktion ist also streng monoton fallend.
  • Während e x für x → ∞ auch gegen ∞ strebt, strebt der gespiegelte Term gegen - ∞.
  • Wie e x strebt für x → -∞ auch -2 e x gegen 0 (nur eben von unten statt von oben).

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= x 6 -13 x 4 +36 x 2 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

x 6 -13 x 4 +36 x 2 = 0
x 2 ( x 4 -13 x 2 +36 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 4 -13 x 2 +36 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -13u +36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +13 ± ( -13 ) 2 -4 · 1 · 36 21

u1,2 = +13 ± 169 -144 2

u1,2 = +13 ± 25 2

u1 = 13 + 25 2 = 13 +5 2 = 18 2 = 9

u2 = 13 - 25 2 = 13 -5 2 = 8 2 = 4

Rücksubstitution:

u1: x 2 = 9

x 2 = 9 | 2
x2 = - 9 = -3
x3 = 9 = 3

u2: x 2 = 4

x 2 = 4 | 2
x4 = - 4 = -2
x5 = 4 = 2

L={ -3 ; -2 ; 0; 2 ; 3 }

0 ist 2-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Somit gilt für die faktorisierte Darstellung:

f(x)= x 2 · ( x +3 ) · ( x -3 ) · ( x +2 ) · ( x -2 ) = x 6 -13 x 4 +36 x 2

Anwendungen

Beispiel:

Eine neue trendy App wird veröffentlicht. Dabei kann die tägliche Downloadzahl (in K) näherungsweise für t ≥ 0 durch die Funktion f mit f(t)= 15 +9 e -0,7t beschrieben werden; f(t) in Tausend Downloads, t in Tagen nach Beobachtungsbeginn bzw. Veröffentlichung.

  1. Wie viele Downloads (in Tausend) werden am Tag 2 heruntergeladen?.
  2. Gegen welchen Wert entwickeln sich die Downloadzahlen auf lange Sicht?
  3. Wie viele Tausend Downloads werden zwischen Tag 0 und Tag 3 insgesamt heruntergeladen?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 2

    Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) = 15 +9 e -0,72 = 9 e -1,4 +15 ≈ 17.2


  2. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 15 +9 e -0,7x 15 +0

    Das langfristige Verhalten der Funktionswerte geht also gegen 15 .

  3. Zuwachs des Bestands zwischem 0 und 3

    Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral 0 3 ( 15 +9 e -0,7x ) x berechnet werden.

    0 3 ( 15 +9 e -0,7x ) x

    = [ 15x - 90 7 e -0,7x ] 0 3

    = 153 - 90 7 e -0,73 - ( 150 - 90 7 e -0,70 )

    = 45 - 90 7 e -2,1 - (0 - 90 7 e 0 )

    = - 90 7 e -2,1 +45 - (0 - 90 7 )

    = - 90 7 e -2,1 +45 - (0 - 90 7 )

    = - 90 7 e -2,1 +45 + 90 7

    = - 90 7 e -2,1 + 405 7


    ≈ 56,283

    56.28 Tausend Downloads ist also der gesuchte Zuwachs des Bestands.