Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(0|0) und N2(-2|0)
- Verhalten für x → ∞: f(x) → ∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da unser Term = für x → +∞ gegen +∞ strebt, erfüllt er nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am negativen Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion an der x-Achse gespiegelt wurde. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte werden so <0, also verläuft der Graph komplett unter der x-Achse.
- Die Funktionswerte werden zwar (wie bei ) betragsmäßig immer größer, durch das negative Vorzeichen aber immer kleiner. Die Funktion ist also streng monoton fallend.
- Während für x → ∞ auch gegen ∞ strebt, strebt der gespiegelte Term gegen - ∞.
- Wie strebt für x → -∞ auch gegen 0 (nur eben von unten statt von oben).
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
|
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
u2:
|
|
= | |
|
|
| x4 | = |
|
=
|
| x5 | = |
|
=
|
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit
Zu Beginn ist der Baum 4 Dezimeter hoch.
- Bestimme die Wachstumsgeschwindigkeit nach 3 Jahren?
- Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
- Wann beträgt die Wachstumsgeschwindigkeit erstmals 21 dm pro Jahr?
- y-Wert bei t = 3
Gesucht ist der Funktionswert zur Zeit t=3. Wir berechnen also einfach f(3) =
=30 - 15 e - 0,4 ⋅ 3 ≈ 25.5- 15 e - 1,2 + 30
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→30 - 15 e - 0,4 t 30 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.30 - Erster t-Wert bei y = 21
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=21 annimmt.
Dazu setzen wir die Funktion einfach = 21 und lösen nach t auf:
30 - 15 e - 0,4 t = 21 - 15 e - 0,4 t + 30 = 21 | - 30 - 15 e - 0,4 t = - 9 |: - 15 e - 0,4 t = 3 5 |ln(⋅) - 0,4 t = ln ( 3 5 ) |: - 0,4 t = - 1 0.4 ln ( 3 5 ) ≈ 1.2771 Der erste Zeitpunkt an dem die die Funktion den Wert 21 annimmt, ist also nach 1.28 Jahre.
