Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(2|0) und N2(0|0)
- Verhalten für x → -∞: f(x) → -∞
- Verhalten für x → ∞: f(x) → ∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da für x → -∞ und für x → +∞ : f(x) in unterschiedliche Richtungen strebt, muss unser gesuchter Term einen ungeraden Grad haben.
Unser bisheriger Term
=
hat aber einen geraden Grad. Deswegen könnten wir ihn beispielsweise
noch mit x multiplizieren, so dass er dann einen ungeraden Grad bekommt:
=
.
Unser Term = erfüllt nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei zu jedem Funktionswert von noch -2 addiert wird, hat der Graph von die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 2 nach unten verschoben. Daraus ergeben sich folgende Aussagen:
- Da der Graph nach unten verschoben wurde, schneidet er nun die x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Für x → -∞ strebt
gegen 0
- 2 , also gegen -2.
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x1 | = |
|
=
|
| x2 | = |
|
=
|
u2:
|
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Bestimme die Temperatur des Getränks 2 Minuten nach Beobachtungsbeginn.
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 23 erreicht?
- y-Wert bei t = 2
Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) =
=25 - 19 e - 0,6 ⋅ 2 ≈ 19.3- 19 e - 1,2 + 25
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→25 - 19 e - 0,6 t 25 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.25 - Erster t-Wert bei y = 23
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=23 annimmt.
Dazu setzen wir die Funktion einfach = 23 und lösen nach t auf:
25 - 19 e - 0,6 t = 23 - 19 e - 0,6 t + 25 = 23 | - 25 - 19 e - 0,6 t = - 2 |: - 19 e - 0,6 t = 2 19 |ln(⋅) - 0,6 t = ln ( 2 19 ) |: - 0,6 t = - 1 0.6 ln ( 2 19 ) ≈ 3.7522 Der erste Zeitpunkt an dem die die Funktion den Wert 23 annimmt, ist also nach 3.75 min.
