Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-1|0) und N2(0|0)
- Verhalten für x → ∞: f(x) → -∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da bei unserem bisherigen Term
=
für x → +∞ : f(x) gegen +∞ und nicht wie
gefordert gegen -∞ strebt, müssen wir den Term noch mit -1 multiplizieren, damit er alle Eigenschaften erfüllt:
=
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Und hier wissen wir ja bereits:
- Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Für x → ∞ strebt gegen ∞ .
- Für x → - ∞ strebt gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Die Geschwindigkeit eines Fahrstuhls in einem Wolkenkratzer kann näherungsweise für 0 ≤ t ≤ 8 durch die Funktion f mit
- Wie schnell (in m/s) ist der Fahrstuhl nach 3 Sekunden?
- Wann ist die Fahrstuhlgeschwindigkeit am größten?
- Wann beschleunigt der Fahrstuhl am stärksten?
- Wann hat der Fahrstuhl erstmals keine Geschwindigkeit?
- Wie viele Meter legt der Fahrstuhl zwischen Sekunde 0 und Sekunde 3 zurück?
- y-Wert bei t = 3
Gesucht ist der Funktionswert zur Zeit t=3. Wir berechnen also einfach f(3) =
=1 16 ( - 3 3 + 48 ⋅ 3 ) ≈ 7.3117 16
- t-Wert des Maximums (HP)
Gesucht ist der t-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:
Detail-Rechnung für den Hochpunkt (
|8) einblenden4 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) =
=1 16 ( - 0 3 + 48 ⋅ 0 ) 0 . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f(8) = =1 16 ( - 8 3 + 48 ⋅ 8 ) .- 8 Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.
Bei t =
ist also der größte Wert der Funktion.4
- t-Wert beim stärksten Zuwachs
Gesucht ist der t-Wert des Hochpunkt der Ableitung.
Dazu berechnen wir erstmal die Ableitungsfunktion f':
f'(t)=
1 16 ( - 3 x 2 + 48 ) =
Wir berechnen also die Extremstellen von f':3 16 ( - x 2 + 16 ) Detail-Rechnung für den Hochpunkt der Ableitung (
|3) einblenden0 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) =
=3 16 ( - 0 2 + 16 ) . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f'(8) =3 =3 16 ( - 8 2 + 16 ) .- 9 Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f'.
Bei t =
ist also der größte Wert der Ableitungsfunktion.0 - Erste Nullstelle
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=0 annimmt.
Dazu setzen wir die Funktion einfach gleich Null und lösen nach t auf:
1 16 ( - t 3 + 48 t ) = 0 - 1 16 t 3 + 3 t = 0 1 16 t ( - t 2 + 48 ) = 0 Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
t1 = 0 2. Fall:
- t 2 + 48 = 0 | - 48 - t 2 = - 48 |: ( - 1 ) t 2 = 48 | ⋅ 2 t2 = - 48 ≈ - 6,928 t3 = 48 ≈ 6,928 Da ja nur nichtnegative t-Werte Sinn machen, sind die Nullstellen somit
0 und .6,928 Die gesuchte erste Nullstelle ist also bei 0 s.
- Zuwachs des Bestands zwischem 0 und 3
Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral
berechnet werden.∫ 0 3 ( 1 16 ( - t 3 + 48 t ) ) ⅆ t ∫ 0 3 ( 1 16 ( - t 3 + 48 t ) ) ⅆ t =
[ 1 16 ( - 1 4 x 4 + 24 x 2 ) ] 0 3 = 1 16 ( - 1 4 ⋅ 3 4 + 24 ⋅ 3 2 ) - 1 16 ( - 1 4 ⋅ 0 4 + 24 ⋅ 0 2 ) =
1 16 ( - 1 4 ⋅ 81 + 24 ⋅ 9 ) - 1 16 ( - 1 4 ⋅ 0 + 24 ⋅ 0 ) =
1 16 ( - 81 4 + 216 ) - 1 16 ( 0 + 0 ) =
1 16 ( - 81 4 + 864 4 ) + 0 =
1 16 · 783 4 =
783 64
≈ 12,23412.23 m ist also der gesuchte Zuwachs des Bestands.
