Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(1|0)
  • Verhalten für x → -∞: f(x) → 0
  • Verhalten für x → ∞: f(x) → ∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x -1 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → -∞ : f(x) → 0 strebt und gleichzeitig für x → +∞ : f(x) → ± ∞ strebt, kennen wir doch von der e-Funktion. Also multiplizieren wir einfach mal ein ex zu unserem bisherigen Term dazu: f(x)= ( x -1 ) · e x . Jetzt strebt auch tatsächlich für x → ∞ : f(x) gegen +∞, so dass wir einen gesuchten Term gefunden haben:
f(x)= ( x -1 ) · e x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x +1 .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e x +1 einfach das x von e x durch ein 'x+1' ersetzt wurde, wird der Graph der natürlichen Exponentialfunktion einfach um -1 in x-Richtung verschoben . Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
  • Wie e x strebt auch e x +1 für x → ∞ gegen ∞ .
  • Wie e x strebt auch e x +1 für x → -∞ gegen 0 .

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= x 8 -5 x 6 +4 x 4 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

x 8 -5 x 6 +4 x 4 = 0
x 4 ( x 4 -5 x 2 +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 4 = 0 | 4
x1 = 0

2. Fall:

x 4 -5 x 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Rücksubstitution:

u1: x 2 = 4

x 2 = 4 | 2
x2 = - 4 = -2
x3 = 4 = 2

u2: x 2 = 1

x 2 = 1 | 2
x4 = - 1 = -1
x5 = 1 = 1

L={ -2 ; -1 ; 0; 1 ; 2 }

0 ist 4-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Somit gilt für die faktorisierte Darstellung:

f(x)= x 4 · ( x +2 ) · ( x -2 ) · ( x +1 ) · ( x -1 ) = x 8 -5 x 6 +4 x 4

Anwendungen

Beispiel:

Eine neue trendy App wird veröffentlicht. Dabei kann die tägliche Downloadzahl (in K) näherungsweise für t ≥ 0 durch die Funktion f mit f(t)= 25 -20 e -0,3t beschrieben werden; f(t) in Tausend Downloads, t in Tagen nach Beobachtungsbeginn bzw. Veröffentlichung.

  1. Wie viele Downloads (in Tausend) werden am Tag 3 heruntergeladen?.
  2. Gegen welchen Wert entwickeln sich die Downloadzahlen auf lange Sicht?
  3. Wann erreicht die Downloadzahl erstmals 21 (Tausend)?
  4. Wie viele Tausend Downloads werden zwischen Tag 0 und Tag 3 insgesamt heruntergeladen?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 3

    Gesucht ist der Funktionswert zur Zeit t=3. Wir berechnen also einfach f(3) = 25 -20 e -0,33 = -20 e -0,9 +25 ≈ 16.9


  2. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 25 -20 e -0,3t 25 +0

    Das langfristige Verhalten der Funktionswerte geht also gegen 25 .

  3. Erster t-Wert bei y = 21

    Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=21 annimmt.

    Dazu setzen wir die Funktion einfach = 21 und lösen nach t auf:

    25 -20 e -0,3t = 21
    -20 e -0,3t +25 = 21 | -25
    -20 e -0,3t = -4 |:-20
    e -0,3t = 1 5 |ln(⋅)
    -0,3t = ln( 1 5 ) |:-0,3
    t = - 1 0.3 ln( 1 5 ) ≈ 5.3648

    Der erste Zeitpunkt an dem die die Funktion den Wert 21 annimmt, ist also nach 5.36 Tage.

  4. Zuwachs des Bestands zwischem 0 und 3

    Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral 0 3 ( 25 -20 e -0,3t ) t berechnet werden.

    0 3 ( 25 -20 e -0,3t ) t

    = [ 25x + 200 3 e -0,3x ] 0 3

    = 253 + 200 3 e -0,33 - ( 250 + 200 3 e -0,30 )

    = 75 + 200 3 e -0,9 - (0 + 200 3 e 0 )

    = 200 3 e -0,9 +75 - (0 + 200 3 )

    = 200 3 e -0,9 +75 - (0 + 200 3 )

    = 200 3 e -0,9 +75 - 200 3

    = 200 3 e -0,9 + 25 3


    ≈ 35,438

    35.44 Tausend Downloads ist also der gesuchte Zuwachs des Bestands.