Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-1|0) und N2(-3|0)
- Schnittpunkt mit der y-Achse: Sy(0|-3)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Um den y-Achsenabschnitt Sy(0|-3) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Wir müssen somit unseren Term noch mit dem Koeffizienten multiplizieren, damit wir den gegebenen y-Achsenabschnit erhalten:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Und hier wissen wir ja bereits:
- Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Für x → ∞ strebt gegen ∞ .
- Für x → - ∞ strebt gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Rücksubstitution:
u1:
|
= | |
|
|
x1 | = |
|
=
|
x2 | = |
|
=
|
u2:
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
In einen Wassertank kann Wasser rein- und rausfließen. Die Änderungsrate des Wasservolumens im Tank kann an einem bestimmten Tag näherungsweise durch die Funktion f mit
- Wann nimmt die Änderungsrate des Wasservolumens am stärksten zu?
- Wie viel m³ Wasser sind 3 Minuten nach Beobachtungsbeginn im Wassertank?
- Zu welchem Zeitpunktz ist am meisten Wasser im Tank?
- t-Wert beim stärksten Zuwachs
Gesucht ist der t-Wert des Hochpunkt der Ableitung.
Dazu berechnen wir erstmal die Ableitungsfunktion f':
f'(t)=
1 9 ( - 3 x 2 + 27 ) =
Wir berechnen also die Extremstellen von f':1 3 ( - x 2 + 9 ) Detail-Rechnung für den Hochpunkt der Ableitung (
|3) einblenden0 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) =
1 3 ( - 0 2 + 9 ) 3 1 3 ( - 7 2 + 9 ) - 40 3 Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f'.
Bei t =
ist also der größte Wert der Ableitungsfunktion.0 - Bestand zur Zeit 3
Gesucht ist ja der Bestands zur Zeit t=3 und weil ja f die Änderungsrate des Bestands angibt, kann der Bestands zur Zeit t=3 als Summe vom Anfangsbestand 30 und dem Integral
∫ 0 3 ( 1 9 ( - t 3 + 27 t ) ) ⅆ t Wir berechenn also zuerst das Integral:
∫ 0 3 ( 1 9 ( - t 3 + 27 t ) ) ⅆ t =
[ 1 9 ( - 1 4 x 4 + 27 2 x 2 ) ] 0 3 = 1 9 ( - 1 4 ⋅ 3 4 + 27 2 ⋅ 3 2 ) - 1 9 ( - 1 4 ⋅ 0 4 + 27 2 ⋅ 0 2 ) =
1 9 ( - 1 4 ⋅ 81 + 27 2 ⋅ 9 ) - 1 9 ( - 1 4 ⋅ 0 + 27 2 ⋅ 0 ) =
1 9 ( - 81 4 + 243 2 ) - 1 9 ( 0 + 0 ) =
1 9 ( - 81 4 + 486 4 ) + 0 =
1 9 · 405 4 =
45 4
= 11,25Jetzt haben wir den Zuwachs und müssen nur noch den Anfangsbestand addieren:
B(3)≈ 30 + 11.25 = 41.2541.25 m³ ist also der gesuchte Bestand zur Zeit t=3.
- t-Wert beim maximalen Bestand
Der Bestand ist ja gerade dann am größten, wenn die Änderungsrate von einer Zunahme zu einer Abnahme wechselt, wenn also erstmals nichts mehr dazu, sondern wieder etwas weg kommt.
Gesucht ist also eine Nullstelle mit Vorzeichenwechsel von + nach - .
Dazu setzen wir die Funktion gleich Null und lösen nach t auf:
1 9 ( - t 3 + 27 t ) = 0 - 1 9 t 3 + 3 t = 0 1 9 t ( - t 2 + 27 ) = 0 Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
t1 = 0 2. Fall:
- t 2 + 27 = 0 | - 27 - t 2 = - 27 |: ( - 1 ) t 2 = 27 | ⋅ 2 t2 = - 27 ≈ - 5,196 t3 = 27 ≈ 5,196 Da ja nur nichtnegative t-Werte Sinn machen, sind die Nullstellen somit
0 und5,196 Da f(4.2) ≈ 4.4 > 0 und f(6.2) ≈ -7.8 < 0 ist, ist die gesuchte Stelle t = 5.2.
Die gesuchte Zeitpunkt mit maximalem Bestand ist somit bei 5.2 min.