Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(0|0) und N2(1|0)
- Verhalten für x → -∞: f(x) → ∞
- Verhalten für x → ∞: f(x) → -∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da für x → -∞ und für x → +∞ : f(x) in unterschiedliche Richtungen strebt, muss unser gesuchter Term einen ungeraden Grad haben.
Unser bisheriger Term
=
hat aber einen geraden Grad. Deswegen könnten wir ihn beispielsweise
noch mit x multiplizieren, so dass er dann einen ungeraden Grad bekommt:
=
.
Es stimmt nun aber das Verhalten für x → ±∞ noch nicht, deswegen müssen wir den Term mit -1 multiplizieren.
Unser Term = erfüllt nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei zu jedem Funktionswert von noch 1 addiert wird, hat der Graph von die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 1 nach oben verschoben. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Für x → -∞ strebt
gegen 0
+ 1 , also gegen 1.
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x1 | = |
|
=
|
| x2 | = |
|
=
|
u2:
|
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Bestimme die Temperatur des Getränks 5 Minuten nach Beobachtungsbeginn.
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 33 erreicht?
- y-Wert bei t = 5
Gesucht ist der Funktionswert zur Zeit t=5. Wir berechnen also einfach f(5) =
=50 - 43 e - 0,4 ⋅ 5 ≈ 44.2- 43 e - 2 + 50
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→50 - 43 e - 0,4 t 50 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.50 - Erster t-Wert bei y = 33
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=33 annimmt.
Dazu setzen wir die Funktion einfach = 33 und lösen nach t auf:
50 - 43 e - 0,4 t = 33 - 43 e - 0,4 t + 50 = 33 | - 50 - 43 e - 0,4 t = - 17 |: - 43 e - 0,4 t = 17 43 |ln(⋅) - 0,4 t = ln ( 17 43 ) |: - 0,4 t = - 1 0.4 ln ( 17 43 ) ≈ 2.32 Der erste Zeitpunkt an dem die die Funktion den Wert 33 annimmt, ist also nach 2.32 min.
