Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(-2|0)
- Verhalten für x → -∞: f(x) → -∞
- Verhalten für x → ∞: f(x) → 0
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Das Verhalten, dass für x → +∞ : f(x) → 0 strebt und gleichzeitig für x → -∞ : f(x) → ± ∞ strebt, kennen wir doch von e-x.
Also multiplizieren wir einfach mal ein e-x zu unserem bisherigen Term dazu:
. Jetzt strebt auch tatsächlich für x → -∞ : f(x) gegen -∞, so dass wir einen gesuchten Term gefunden haben:
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei einfach das x von durch ein -x ersetzt wurde, erhält man den Graph von indem man den der natürlichen Exponentialfunktion an der y-Achse spiegelt. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer kleiner . Die Funktion ist also streng monoton fallend.
- Wie für x → -∞ strebt für x → ∞ gegen 0.
- Wie für x → ∞ strebt für x → -∞ gegen ∞ .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
|
|
= | |
|
|
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit
Zu Beginn ist der Baum 3 Dezimeter hoch.
- Bestimme die Wachstumsgeschwindigkeit nach 5 Jahren?
- Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
- Wie hoch ist der Baum nach 3 Jahren?
- y-Wert bei t = 5
Gesucht ist der Funktionswert zur Zeit t=5. Wir berechnen also einfach f(5) =
=30 + 19 e - 0,4 ⋅ 5 ≈ 32.619 e - 2 + 30
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→30 + 19 e - 0,4 x 30 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.30 - Bestand zur Zeit 3
Gesucht ist ja der Bestands zur Zeit t=3 und weil ja f die Änderungsrate des Bestands angibt, kann der Bestands zur Zeit t=3 als Summe vom Anfangsbestand 3 und dem Integral
berechnet werden.∫ 0 3 ( 30 + 19 e - 0,4 x ) ⅆ x Wir berechenn also zuerst das Integral:
∫ 0 3 ( 30 + 19 e - 0,4 x ) ⅆ x =
[ 30 x - 95 2 e - 0,4 x ] 0 3 = 30 ⋅ 3 - 95 2 e - 0,4 ⋅ 3 - ( 30 ⋅ 0 - 95 2 e - 0,4 ⋅ 0 ) =
90 - 95 2 e - 1,2 - ( 0 - 95 2 e 0 ) =
- 95 2 e - 1,2 + 90 - ( 0 - 95 2 ) =
- 95 2 e - 1,2 + 90 - ( 0 - 47,5 ) =
- 95 2 e - 1,2 + 90 + 47,5 =
- 95 2 e - 1,2 + 137,5
≈ 123,193Jetzt haben wir den Zuwachs und müssen nur noch den Anfangsbestand addieren:
B(3)≈ 3 + 123.193 = 126.193126.19 dm ist also der gesuchte Bestand zur Zeit t=3.
