Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(0|0)
  • Verhalten für x → -∞: f(x) → ∞
  • Verhalten für x → ∞: f(x) → 0

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +0 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → +∞ : f(x) → 0 strebt und gleichzeitig für x → -∞ : f(x) → ± ∞ strebt, kennen wir doch von e-x. Also multiplizieren wir einfach mal ein e-x zu unserem bisherigen Term dazu: f(x)= x · e -x . Weil jetzt aber für x → -∞ : f(x) → -∞ streben würde, es ja aber gegen +∞ streben soll, spiegeln wir einfach die Funktion an der x-Achse, indem wir den Term mit -1 multiplizieren und erhalten so:
f(x)= - x · e -x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Und hier wissen wir ja bereits:

  • Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
  • Für x → ∞ strebt e x gegen ∞ .
  • Für x → - ∞ strebt e x gegen 0 .

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= 3 x 4 +30 x 3 +75 x 2 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

3 x 4 +30 x 3 +75 x 2 = 0
3 x 2 ( x 2 +10x +25 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x2,3 = -10 ± 10 2 -4 · 1 · 25 21

x2,3 = -10 ± 100 -100 2

x2,3 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 ; 0}

-5 ist 2-fache Lösung! 0 ist 2-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Auch der ausgeklammerte (oder wegdividierte) Faktor 3 darf natürlich nicht vergessen werden:

Somit gilt für die faktorisierte Darstellung:

f(x)= 3 x 2 · ( x +5 ) 2 = 3 x 4 +30 x 3 +75 x 2

Anwendungen

Beispiel:

Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit f(t)= 30 -29 e -0,5t beschrieben werden (t in Jahren nach Beobachtungsbeginn, f(t) in Dezimeter pro Jahr).
Zu Beginn ist der Baum 2 Dezimeter hoch.

  1. Bestimme die Wachstumsgeschwindigkeit nach 2 Jahren?
  2. Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
  3. Um wie viele Dezimeter ist der Baum zwischen Jahr 0 und Jahr 3 gewachsen?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 2

    Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) = 30 -29 e -0,52 = -29 e -1 +30 ≈ 19.3


  2. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 30 -29 e -0,5x 30 +0

    Das langfristige Verhalten der Funktionswerte geht also gegen 30 .

  3. Zuwachs des Bestands zwischem 0 und 3

    Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral 0 3 ( 30 -29 e -0,5x ) x berechnet werden.

    0 3 ( 30 -29 e -0,5x ) x

    = [ 30x +58 e -0,5x ] 0 3

    = 303 +58 e -0,53 - ( 300 +58 e -0,50 )

    = 90 +58 e -1,5 - (0 +58 e 0 )

    = 58 e -1,5 +90 - (0 +58 )

    = 58 e -1,5 +90 -58

    = 58 e -1,5 +32


    ≈ 44,942

    44.94 dm ist also der gesuchte Zuwachs des Bestands.