Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-2|0) und N2(-1|0)
- Schnittpunkt mit der y-Achse: Sy(0|2)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Um den y-Achsenabschnitt Sy(0|2) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei zu jedem Funktionswert von noch -2 addiert wird, hat der Graph von die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 2 nach unten verschoben. Daraus ergeben sich folgende Aussagen:
- Da der Graph nach unten verschoben wurde, schneidet er nun die x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Für x → -∞ strebt
gegen 0
- 2 , also gegen -2.
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
= | | | ||
x1 | = |
2. Fall:
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Rücksubstitution:
u1:
|
= | |
|
|
x2 | = |
|
=
|
x3 | = |
|
=
|
u2:
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Bestimme die Temperatur des Getränks 3 Minuten nach Beobachtungsbeginn.
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 14 erreicht?
- y-Wert bei t = 3
Gesucht ist der Funktionswert zur Zeit t=3. Wir berechnen also einfach f(3) =
15 - 15 e - 0,5 ⋅ 3 - 15 e - 1,5 + 15
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
15 - 15 e - 0,5 t 15 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
15 - Erster t-Wert bei y = 14
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=14 annimmt.
Dazu setzen wir die Funktion einfach = 14 und lösen nach t auf:
15 - 15 e - 0,5 t = 14 - 15 e - 0,5 t + 15 = 14 | - 15 - 15 e - 0,5 t = - 1 |: - 15 e - 0,5 t = 1 15 |ln(⋅) - 0,5 t = ln ( 1 15 ) |: - 0,5 t = - 1 0.5 ln ( 1 15 ) ≈ 5.4161 Der erste Zeitpunkt an dem die die Funktion den Wert 14 annimmt, ist also nach 5.42 min.