Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(0|0)
- einen Punkt mit waagrechter Tangente bei x = -2
- Verhalten für x → -∞: f(x) → -∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Der Punkt mit waagrechter Tangente bei x = -2 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.
Als neuen Term erhalten wir somit
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da unser Term = für x → -∞ gegen -∞ strebt, erfüllt er nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei einfach das x von durch ein -x ersetzt wurde, erhält man den Graph von indem man den der natürlichen Exponentialfunktion an der y-Achse spiegelt. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer kleiner . Die Funktion ist also streng monoton fallend.
- Wie für x → -∞ strebt für x → ∞ gegen 0.
- Wie für x → ∞ strebt für x → -∞ gegen ∞ .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x1 | = |
|
=
|
| x2 | = |
|
=
|
u2:
|
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Eine neue trendy App wird veröffentlicht. Dabei kann die tägliche Downloadzahl (in K) näherungsweise für 0 ≤ t ≤ 6 durch die Funktion f mit
- Wann werden die wenigsten Downloads heruntergeladen?
- Wann erreicht die Downloadzahl erstmals
(Tausend)?14 3 - Wie viele Tausend Downloads wurden insgesamt nach den ersten 3 Tagen heruntergeladen?
- t-Wert des Minimums (TP)
Gesucht ist der t-Wert des Tiefpunkt. Wir berechnen also die Extremstellen von f:
Detail-Rechnung für den Tiefpunkt (
|2) einblenden3 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) =
=2 3 ⋅ 0 2 - 4 ⋅ 0 + 8 . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f(6) =8 =2 3 ⋅ 6 2 - 4 ⋅ 6 + 8 .8 Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f(0) =
.8 Bei t =
ist also der kleinste Wert der Funktion.3
- Erster t-Wert bei y =
14 3 Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=
annimmt.14 3 Dazu setzen wir die Funktion einfach =
und lösen nach t auf:14 3 2 3 t 2 - 4 t + 8 = 14 3 |⋅ 3 3 ( 2 3 t 2 - 4 t + 8 ) = 14 2 t 2 - 12 t + 24 = 14 | - 14 2 t 2 - 12 t + 10 = 0 |:2 = 0t 2 - 6 t + 5 eingesetzt in die Mitternachtsformel (a-b-c-Formel):
t1,2 =
+ 6 - Bestand zur Zeit 3
Gesucht ist ja der Bestands zur Zeit t=3 und weil ja f die Änderungsrate des Bestands angibt, kann der Bestands zur Zeit t=3 als Summe vom Anfangsbestand 0 und dem Integral
berechnet werden.∫ 0 3 ( 2 3 t 2 - 4 t + 8 ) ⅆ t Wir berechenn also zuerst das Integral:
∫ 0 3 ( 2 3 t 2 - 4 t + 8 ) ⅆ t =
[ 2 9 x 3 - 2 x 2 + 8 x ] 0 3 = 2 9 ⋅ 3 3 - 2 ⋅ 3 2 + 8 ⋅ 3 - ( 2 9 ⋅ 0 3 - 2 ⋅ 0 2 + 8 ⋅ 0 ) =
2 9 ⋅ 27 - 2 ⋅ 9 + 24 - ( 2 9 ⋅ 0 - 2 ⋅ 0 + 0 ) =
6 - 18 + 24 - ( 0 + 0 + 0 ) =
12 + 0 =
12 Jetzt haben wir den Zuwachs und müssen nur noch den Anfangsbestand addieren:
B(3)≈ 0 + 12 = 1212 Tausend Downloads ist also der gesuchte Bestand zur Zeit t=3.
- Bestand zur Zeit 3
