Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(1|0)
- einen Punkt mit waagrechter Tangente bei x = 2
- Schnittpunkt mit der y-Achse: Sy(0|-4)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Der Punkt mit waagrechter Tangente bei x = 2 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.
Als neuen Term erhalten wir somit
Um den y-Achsenabschnitt Sy(0|-4) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei
einfach das x von
durch ein 'x
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Wie strebt auch für x → -∞ gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
|
|
= |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Rücksubstitution:
u1:
|
|
= | |
|
|
| x2 | = |
|
=
|
| x3 | = |
|
=
|
u2:
|
|
= | |
|
Diese Gleichung hat keine (reele) Lösung!
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor -2 darf natürlich nicht vergessen werden:
Wenn wir den substituierten Term
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Bestimme die Temperatur des Getränks 3 Minuten nach Beobachtungsbeginn.
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 26 erreicht?
- y-Wert bei t = 3
Gesucht ist der Funktionswert zur Zeit t=3. Wir berechnen also einfach f(3) =
=35 - 32 e - 0,4 ⋅ 3 ≈ 25.4- 32 e - 1,2 + 35
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→35 - 32 e - 0,4 t 35 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.35 - Erster t-Wert bei y = 26
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=26 annimmt.
Dazu setzen wir die Funktion einfach = 26 und lösen nach t auf:
35 - 32 e - 0,4 t = 26 - 32 e - 0,4 t + 35 = 26 | - 35 - 32 e - 0,4 t = - 9 |: - 32 e - 0,4 t = 9 32 |ln(⋅) - 0,4 t = ln ( 9 32 ) |: - 0,4 t = - 1 0.4 ln ( 9 32 ) ≈ 3.1713 Der erste Zeitpunkt an dem die die Funktion den Wert 26 annimmt, ist also nach 3.17 min.
