Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsamer Punkt mit der x-Achse: N(-1|0)
- einen Punkt mit waagrechter Tangente bei x = -3
- Schnittpunkt mit der y-Achse: Sy(0|-9)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Der Punkt mit waagrechter Tangente bei x = -3 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.
Als neuen Term erhalten wir somit
Um den y-Achsenabschnitt Sy(0|-9) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Wir müssen somit unseren Term noch mit dem Koeffizienten multiplizieren, damit wir den gegebenen y-Achsenabschnit erhalten:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei
einfach das x von
durch ein 'x
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Wie strebt auch für x → -∞ gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Die momentane Wachstumsrate der Höhe eines Baums kann für 0 ≤ t ≤ 12 näherungsweise durch die Funktion f mit
Zu Beginn ist der Baum 1 Dezimeter hoch.
- Wann ist die Wachstumsgeschwindigkeit am geringsten?
- Wann beträgt die Wachstumsgeschwindigkeit erstmals
dm pro Jahr?332 25 - Wie hoch ist der Baum nach 3 Jahren?
- t-Wert des Minimums (TP)
Gesucht ist der t-Wert des Tiefpunkt. Wir berechnen also die Extremstellen von f:
Detail-Rechnung für den Tiefpunkt (
|3.04) einblenden6 Randwertuntersuchung
Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.
Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) =
=1 100 ⋅ 0 4 - 18 25 ⋅ 0 2 + 16 . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f(12) =16 =1 100 ⋅ 12 4 - 18 25 ⋅ 12 2 + 16 .2992 25 Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f(0) =
.16 Bei t =
ist also der kleinste Wert der Funktion.6
- Erster t-Wert bei y =
332 25 Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=
annimmt.332 25 Dazu setzen wir die Funktion einfach =
und lösen nach t auf:332 25 1 100 t 4 - 18 25 t 2 + 16 = 332 25 | - 332 25 1 100 t 4 - 18 25 t 2 + 68 25 = 0 Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
t 2 Draus ergibt sich die quadratische Gleichung:
1 100 u 2 - 18 25 u + 68 25 = 0 |⋅ 100 100 ( 1 100 u 2 - 18 25 u + 68 25 ) = 0 = 0u 2 - 72 u + 272 eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
+ 72 - Bestand zur Zeit 3
Gesucht ist ja der Bestands zur Zeit t=3 und weil ja f die Änderungsrate des Bestands angibt, kann der Bestands zur Zeit t=3 als Summe vom Anfangsbestand 1 und dem Integral
berechnet werden.∫ 0 3 ( 1 100 t 4 - 18 25 t 2 + 16 ) ⅆ t Wir berechenn also zuerst das Integral:
∫ 0 3 ( 1 100 t 4 - 18 25 t 2 + 16 ) ⅆ t =
[ 1 500 x 5 - 6 25 x 3 + 16 x ] 0 3 = 1 500 ⋅ 3 5 - 6 25 ⋅ 3 3 + 16 ⋅ 3 - ( 1 500 ⋅ 0 5 - 6 25 ⋅ 0 3 + 16 ⋅ 0 ) =
1 500 ⋅ 243 - 6 25 ⋅ 27 + 48 - ( 1 500 ⋅ 0 - 6 25 ⋅ 0 + 0 ) =
243 500 - 162 25 + 48 - ( 0 + 0 + 0 ) =
243 500 - 3240 500 + 24000 500 + 0 =
21003 500
= 42,006Jetzt haben wir den Zuwachs und müssen nur noch den Anfangsbestand addieren:
B(3)≈ 1 + 42.006 = 43.00643.01 dm ist also der gesuchte Bestand zur Zeit t=3.
- Bestand zur Zeit 3
