Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(-2|0)
  • Verhalten für x → -∞: f(x) → 0
  • Verhalten für x → ∞: f(x) → -∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +2 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → -∞ : f(x) → 0 strebt und gleichzeitig für x → +∞ : f(x) → ± ∞ strebt, kennen wir doch von der e-Funktion. Also multiplizieren wir einfach mal ein ex zu unserem bisherigen Term dazu: f(x)= ( x +2 ) · e x . Weil jetzt aber für x → +∞ : f(x) → +∞ streben würde, es ja aber gegen -∞ streben soll, spiegeln wir einfach die Funktion an der x-Achse, indem wir den Term mit -1 multiplizieren und erhalten so:
f(x)= - ( x +2 ) · e x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x +1 .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e x +1 zu jedem Funktionswert von e x noch 1 addiert wird, hat der Graph von e x +1 die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 1 nach oben verschoben. Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
  • Wie e x strebt auch e x +1 für x → ∞ gegen ∞ .
  • Für x → -∞ strebt e x +1 gegen 0 +1, also gegen 1.

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= x 4 +5 x 2 -6 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

x 4 +5 x 2 -6 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +5u -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -5 ± 5 2 -4 · 1 · ( -6 ) 21

u1,2 = -5 ± 25 +24 2

u1,2 = -5 ± 49 2

u1 = -5 + 49 2 = -5 +7 2 = 2 2 = 1

u2 = -5 - 49 2 = -5 -7 2 = -12 2 = -6

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -6

x 2 = -6 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Wenn wir den substituierten Term u 2 +5u -6 anschauen, können wir ja auch den erst mal noch faktorisieren:

x 4 +5 x 2 -6 =nach Substitution u 2 +5u -6 = ( u -1 ) · ( u +6 ) =nach Re-Substitution ( -1 ) · ( +6 )

Somit gilt für die faktorisierte Darstellung:

f(x)= ( x +1 ) · ( x -1 ) · ( x 2 +6 ) = x 4 +5 x 2 -6

Anwendungen

Beispiel:

Eine neue trendy App wird veröffentlicht. Dabei kann die tägliche Downloadzahl (in K) näherungsweise für t ≥ 0 durch die Funktion f mit f(t)= 30 +20 e -0,6t beschrieben werden; f(t) in Tausend Downloads, t in Tagen nach Beobachtungsbeginn bzw. Veröffentlichung.

  1. Wie viele Downloads (in Tausend) werden am Tag 5 heruntergeladen?.
  2. Wann erreicht die Downloadzahl erstmals 40 (Tausend)?
  3. Wie viele Tausend Downloads werden zwischen Tag 0 und Tag 3 insgesamt heruntergeladen?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 5

    Gesucht ist der Funktionswert zur Zeit t=5. Wir berechnen also einfach f(5) = 30 +20 e -0,65 = 20 e -3 +30 ≈ 31


  2. Erster t-Wert bei y = 40

    Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=40 annimmt.

    Dazu setzen wir die Funktion einfach = 40 und lösen nach t auf:

    30 +20 e -0,6t = 40
    20 e -0,6t +30 = 40 | -30
    20 e -0,6t = 10 |:20
    e -0,6t = 1 2 |ln(⋅)
    -0,6t = ln( 1 2 ) |:-0,6
    t = - 1 0.6 ln( 1 2 ) ≈ 1.1552

    Der erste Zeitpunkt an dem die die Funktion den Wert 40 annimmt, ist also nach 1.16 Tage.

  3. Zuwachs des Bestands zwischem 0 und 3

    Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral 0 3 ( 30 +20 e -0,6t ) t berechnet werden.

    0 3 ( 30 +20 e -0,6t ) t

    = [ 30x - 100 3 e -0,6x ] 0 3

    = 303 - 100 3 e -0,63 - ( 300 - 100 3 e -0,60 )

    = 90 - 100 3 e -1,8 - (0 - 100 3 e 0 )

    = - 100 3 e -1,8 +90 - (0 - 100 3 )

    = - 100 3 e -1,8 +90 - (0 - 100 3 )

    = - 100 3 e -1,8 +90 + 100 3

    = - 100 3 e -1,8 + 370 3


    ≈ 117,823

    117.82 Tausend Downloads ist also der gesuchte Zuwachs des Bestands.