Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(0|0)
  • einen Punkt mit waagrechter Tangente bei x = -2
  • Verhalten für x → ∞: f(x) → ∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +0 .

Der Punkt mit waagrechter Tangente bei x = -2 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.

Als neuen Term erhalten wir somit f(x)= ( x +0 ) · ( x +2 ) 2

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Da unser Term x ( x +2 ) 2 = x 3 +4 x 2 +4x für x → +∞ gegen +∞ strebt, erfüllt er nun alle geforderten Eigenschaften.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x -3 .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e x -3 zu jedem Funktionswert von e x noch -3 addiert wird, hat der Graph von e x -3 die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 3 nach unten verschoben. Daraus ergeben sich folgende Aussagen:

  • Da der Graph nach unten verschoben wurde, schneidet er nun die x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
  • Wie e x strebt auch e x -3 für x → ∞ gegen ∞ .
  • Für x → -∞ strebt e x -3 gegen 0 -3, also gegen -3.

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= 2 x 3 +2 x 2 -12x und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

2 x 3 +2 x 2 -12x = 0
2 x ( x 2 + x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 + x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x2,3 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x2,3 = -1 ± 1 +24 2

x2,3 = -1 ± 25 2

x2 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x3 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

L={ -3 ; 0; 2 }

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:

Somit gilt für die faktorisierte Darstellung:

f(x)= 2 x · ( x -2 ) · ( x +3 ) = 2 x 3 +2 x 2 -12x

Anwendungen

Beispiel:

Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit f(t)= 2 t · e -0,2t beschrieben werden (t in Jahren nach Beobachtungsbeginn, f(t) in Dezimeter pro Jahr).
Zu Beginn ist der Baum 5 Dezimeter hoch.

  1. Bestimme die Wachstumsgeschwindigkeit nach 2 Jahren?
  2. Wann ist die Wachstumsgeschwindigkeit am größten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 2

    Gesucht ist der Funktionswert zur Zeit t=2. Wir berechnen also einfach f(2) = 2 · 2 · e -0,22 = 4 e -0,4 ≈ 2.7


  2. t-Wert des Maximums (HP)

    Gesucht ist der t-Wert des Hochpunkt. Wir berechnen also die Extremstellen von f:

    Detail-Rechnung für den Hochpunkt (5 |3.68) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = 2 · 0 · e -0,20 = 0. Am rechten Rand müssen wir das Verhalten für t → ∞ betrachten: Für t → ∞ ⇒ f(t) → 0.

    Weil die Werte an den Rändern kleiner als am Hochpunkt sind, ist das lokale Maximum also ein globales Maximum von f.

    Bei t = 5 ist also der größte Wert der Funktion.