Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-1|0) und N2(0|0)
- Verhalten für x → -∞: f(x) → ∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da unser Term = für x → -∞ gegen +∞ strebt, erfüllt er nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei einfach das x von durch ein -x ersetzt wurde, erhält man den Graph von indem man den der natürlichen Exponentialfunktion an der y-Achse spiegelt. Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer kleiner . Die Funktion ist also streng monoton fallend.
- Wie für x → -∞ strebt für x → ∞ gegen 0.
- Wie für x → ∞ strebt für x → -∞ gegen ∞ .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x1,2 =
x1,2 =
x1,2 =
Da die Wurzel Null ist, gibt es nur eine Lösung:
x = =
L={ }
ist 2-fache Lösung!
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:
Somit gilt für die faktorisierte Darstellung:
=
Anwendungen
Beispiel:
Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit beschrieben werden (t in Jahren nach Beobachtungsbeginn, f(t) in Dezimeter pro Jahr).
Zu Beginn ist der Baum 3 Dezimeter hoch.
- Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
- Wann beträgt die Wachstumsgeschwindigkeit erstmals 23 dm pro Jahr?
- Um wie viele Dezimeter ist der Baum zwischen Jahr 0 und Jahr 3 gewachsen?
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)= →
Das langfristige Verhalten der Funktionswerte geht also gegen .
- Erster t-Wert bei y = 23
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=23 annimmt.
Dazu setzen wir die Funktion einfach = 23 und lösen nach t auf:
= = | = |: = |ln(⋅) = |: = ≈ 2.4255 Der erste Zeitpunkt an dem die die Funktion den Wert 23 annimmt, ist also nach 2.43 Jahre.
- Zuwachs des Bestands zwischem 0 und 3
Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral berechnet werden.
=
=
=
=
=
≈ 48,26548.26 dm ist also der gesuchte Zuwachs des Bestands.
