Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(2|0)
  • einen Punkt mit waagrechter Tangente bei x = 0
  • Verhalten für x → -∞: f(x) → -∞
  • Verhalten für x → ∞: f(x) → ∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x -2 .

Der Punkt mit waagrechter Tangente bei x = 0 erhalten wir am einfachsten mit einer doppelten Nullstelle, weil eine doppelte Nullstelle ja immer nur die x-Achse berührt, ohne sie zu überschreiten. Dadurch liegt an einer doppelten Nullstelle stets ein Extrempunkt, also ein Punkt mit waagrechter Tangente vor.

Als neuen Term erhalten wir somit f(x)= ( x -2 ) · ( x +0 ) 2

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Unser Term ( x -2 ) x 2 = x 3 -2 x 2 erfüllt nun alle geforderten Eigenschaften.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Und hier wissen wir ja bereits:

  • Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
  • Für x → ∞ strebt e x gegen ∞ .
  • Für x → - ∞ strebt e x gegen 0 .

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= x 4 +10 x 3 +25 x 2 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

x 4 +10 x 3 +25 x 2 = 0
x 2 ( x 2 +10x +25 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x2,3 = -10 ± 10 2 -4 · 1 · 25 21

x2,3 = -10 ± 100 -100 2

x2,3 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 ; 0}

-5 ist 2-fache Lösung! 0 ist 2-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Somit gilt für die faktorisierte Darstellung:

f(x)= x 2 · ( x +5 ) 2 = x 4 +10 x 3 +25 x 2

Anwendungen

Beispiel:

Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit f(t)= 15 -9 e -0,3t beschrieben werden; f(t) in °C, t in Minuten nach Beobachtungsbeginn.

  1. Welche Temperatur hat das Getränk langfristig?
  2. Wann hat das Getränk die Temperatur von 10 erreicht?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 15 -9 e -0,3t 15 +0

    Das langfristige Verhalten der Funktionswerte geht also gegen 15 .

  2. Erster t-Wert bei y = 10

    Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=10 annimmt.

    Dazu setzen wir die Funktion einfach = 10 und lösen nach t auf:

    15 -9 e -0,3t = 10
    -9 e -0,3t +15 = 10 | -15
    -9 e -0,3t = -5 |:-9
    e -0,3t = 5 9 |ln(⋅)
    -0,3t = ln( 5 9 ) |:-0,3
    t = - 1 0.3 ln( 5 9 ) ≈ 1.9593

    Der erste Zeitpunkt an dem die die Funktion den Wert 10 annimmt, ist also nach 1.96 min.