Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(-1|0) und N2(1|0)
- Schnittpunkt mit der y-Achse: Sy(0|-1)
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Um den y-Achsenabschnitt Sy(0|-1) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:
f(0) = =
Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm .
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei zu jedem Funktionswert von noch -3 addiert wird, hat der Graph von die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 3 nach unten verschoben. Daraus ergeben sich folgende Aussagen:
- Da der Graph nach unten verschoben wurde, schneidet er nun die x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Für x → -∞ strebt
gegen 0
- 3 , also gegen -3.
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | | | ||
| = | |: | ||
| = | | | ||
| x1 | = |
|
=
|
| x2 | = |
|
=
|
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Auch der ausgeklammerte (oder wegdividierte) Faktor 3 darf natürlich nicht vergessen werden:
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 11 erreicht?
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→15 - 11 e - 0,3 t 15 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.15 - Erster t-Wert bei y = 11
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=11 annimmt.
Dazu setzen wir die Funktion einfach = 11 und lösen nach t auf:
15 - 11 e - 0,3 t = 11 - 11 e - 0,3 t + 15 = 11 | - 15 - 11 e - 0,3 t = - 4 |: - 11 e - 0,3 t = 4 11 |ln(⋅) - 0,3 t = ln ( 4 11 ) |: - 0,3 t = - 1 0.3 ln ( 4 11 ) ≈ 3.372 Der erste Zeitpunkt an dem die die Funktion den Wert 11 annimmt, ist also nach 3.37 min.
