Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(0|0)
  • Verhalten für x → -∞: f(x) → 0
  • Verhalten für x → ∞: f(x) → -∞

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +0 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → -∞ : f(x) → 0 strebt und gleichzeitig für x → +∞ : f(x) → ± ∞ strebt, kennen wir doch von der e-Funktion. Also multiplizieren wir einfach mal ein ex zu unserem bisherigen Term dazu: f(x)= x · e x . Weil jetzt aber für x → +∞ : f(x) → +∞ streben würde, es ja aber gegen -∞ streben soll, spiegeln wir einfach die Funktion an der x-Achse, indem wir den Term mit -1 multiplizieren und erhalten so:
f(x)= - x · e x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= -2 e x .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Am negativen Koeffizient vor dem e x erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion an der x-Achse gespiegelt (und noch in y-Richtung gestreckt) wurde. Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte werden so <0, also verläuft der Graph komplett unter der x-Achse.
  • Die Funktionswerte werden zwar (wie bei e x ) betragsmäßig immer größer, durch das negative Vorzeichen aber immer kleiner. Die Funktion ist also streng monoton fallend.
  • Während e x für x → ∞ auch gegen ∞ strebt, strebt der gespiegelte Term gegen - ∞.
  • Wie e x strebt für x → -∞ auch -2 e x gegen 0 (nur eben von unten statt von oben).

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= 3 x 5 -12 x 4 +9 x 3 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

3 x 5 -12 x 4 +9 x 3 = 0
3 x 3 ( x 2 -4x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x2,3 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x2,3 = +4 ± 16 -12 2

x2,3 = +4 ± 4 2

x2 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x3 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

L={0; 1 ; 3 }

0 ist 3-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Auch der ausgeklammerte (oder wegdividierte) Faktor 3 darf natürlich nicht vergessen werden:

Somit gilt für die faktorisierte Darstellung:

f(x)= 3 x 3 · ( x -3 ) · ( x -1 ) = 3 x 5 -12 x 4 +9 x 3

Anwendungen

Beispiel:

Die Geschwindigkeit eines Fahrstuhls in einem Wolkenkratzer kann näherungsweise für 0 ≤ t ≤ 4 durch die Funktion f mit f(t)= t 3 -4 t 2 +12 beschrieben werden f(t) in m/s, t in s nach Beobachtungsbeginn. Zu Beobachtungsbeginn ist der Fahrstuhl auf 5 m Höhe.

  1. Wann ist die Fahrstuhlgeschwindigkeit minimal?
  2. Wann bremst der Fahrstuhl am stärksten ab?
  3. Wie viele Meter legt der Fahrstuhl zwischen Sekunde 0 und Sekunde 3 zurück?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. t-Wert des Minimums (TP)

    Gesucht ist der t-Wert des Tiefpunkt. Wir berechnen also die Extremstellen von f:

    Detail-Rechnung für den Tiefpunkt ( 8 3 |2.52) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = 0 3 -4 0 2 +12 = 12 . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f(4) = 4 3 -4 4 2 +12 = 12 .

    Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f(0) = 12 .

    Bei t = 8 3 ist also der kleinste Wert der Funktion.


  2. t-Wert bei der stärksten Abnahme

    Gesucht ist der t-Wert des Tiefpunkt der Ableitung.

    Dazu berechnen wir erstmal die Ableitungsfunktion f':

    f'(t)= 3 x 2 -8x +0

    = x ( 3x -8 )

    Wir berechnen also die Extremstellen von f':

    Detail-Rechnung für den Tiefpunkt der Ableitung ( 4 3 |-5.33) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) = 0 · ( 30 -8 ) = 0. Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f'(4) = 4 · ( 34 -8 ) = 16 .

    Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f'(0) = 0 .

    Bei t = 4 3 ist also der kleinste Wert der Ableitungsfunktion.

  3. Zuwachs des Bestands zwischem 0 und 3

    Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral 0 3 ( t 3 -4 t 2 +12 ) t berechnet werden.

    0 3 ( t 3 -4 t 2 +12 ) t

    = [ 1 4 x 4 - 4 3 x 3 +12x ] 0 3

    = 1 4 3 4 - 4 3 3 3 +123 - ( 1 4 0 4 - 4 3 0 3 +120 )

    = 1 4 81 - 4 3 27 +36 - ( 1 4 0 - 4 3 0 +0)

    = 81 4 -36 +36 - (0+0+0)

    = 81 4 - 144 4 + 144 4 +0

    = 81 4


    = 20,25

    20.25 m ist also der gesuchte Zuwachs des Bestands.