Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(0|0) und N2(-2|0)
- Verhalten für x → ∞: f(x) → ∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da unser Term = für x → +∞ gegen +∞ strebt, erfüllt er nun alle geforderten Eigenschaften.
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei
einfach das x von
durch ein 'x
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Wie strebt auch für x → -∞ gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 41 erreicht?
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→45 - 35 e - 0,6 t 45 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.45 - Erster t-Wert bei y = 41
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=41 annimmt.
Dazu setzen wir die Funktion einfach = 41 und lösen nach t auf:
45 - 35 e - 0,6 t = 41 - 35 e - 0,6 t + 45 = 41 | - 45 - 35 e - 0,6 t = - 4 |: - 35 e - 0,6 t = 4 35 |ln(⋅) - 0,6 t = ln ( 4 35 ) |: - 0,6 t = - 1 0.6 ln ( 4 35 ) ≈ 3.6151 Der erste Zeitpunkt an dem die die Funktion den Wert 41 annimmt, ist also nach 3.62 min.
