Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsame Punkte mit der x-Achse: N1(2|0) und N2(1|0)
  • Schnittpunkt mit der y-Achse: Sy(0|-4)

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= ( x -2 ) · ( x -1 ) .

Um den y-Achsenabschnitt Sy(0|-4) zu überprüfen, setzen wir jetzt einfach x=0 in unseren bisherigen Term ein:

f(0) = ( 0 -2 ) · ( 0 -1 ) = 2

Wir müssen somit unseren Term noch mit dem Koeffizienten -2 multiplizieren, damit wir den gegebenen y-Achsenabschnit erhalten:

f(0) = -2 · ( 0 -2 ) · ( 0 -1 ) = -4

Da also auch der y-Achsenabschnit passt, haben wir nun einen fertigen Funktionsterm f(x)= -2 ( x -2 ) ( x -1 ) .

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x +1 .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e x +1 zu jedem Funktionswert von e x noch 1 addiert wird, hat der Graph von e x +1 die gleiche Form wie der der natürlichen Exponentialfunktion, nur eben um 1 nach oben verschoben. Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer größer. Die Funktion ist also streng monoton steigend.
  • Wie e x strebt auch e x +1 für x → ∞ gegen ∞ .
  • Für x → -∞ strebt e x +1 gegen 0 +1, also gegen 1.

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= -2 x 8 -12 x 6 +14 x 4 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

-2 x 8 -12 x 6 +14 x 4 = 0
-2 x 4 ( x 4 +6 x 2 -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 4 = 0 | 4
x1 = 0

2. Fall:

x 4 +6 x 2 -7 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +6u -7 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -6 ± 6 2 -4 · 1 · ( -7 ) 21

u1,2 = -6 ± 36 +28 2

u1,2 = -6 ± 64 2

u1 = -6 + 64 2 = -6 +8 2 = 2 2 = 1

u2 = -6 - 64 2 = -6 -8 2 = -14 2 = -7

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

u2: x 2 = -7

x 2 = -7 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 0; 1 }

0 ist 4-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Auch der ausgeklammerte (oder wegdividierte) Faktor -2 darf natürlich nicht vergessen werden:

Wenn wir den substituierten Term u 2 +6u -7 anschauen, können wir ja auch den erst mal noch faktorisieren:

x 4 +6 x 2 -7 =nach Substitution u 2 +6u -7 = ( u -1 ) · ( u +7 ) =nach Re-Substitution ( -1 ) · ( +7 )

Somit gilt für die faktorisierte Darstellung:

f(x)= -2 x 4 · ( x +1 ) · ( x -1 ) · ( x 2 +7 ) = -2 x 8 -12 x 6 +14 x 4

Anwendungen

Beispiel:

In einen Wassertank kann Wasser rein- und rausfließen. Die Änderungsrate des Wasservolumens im Tank kann an einem bestimmten Tag näherungsweise durch die Funktion f mit f(t)= 1 4 t 3 - 7 4 t 2 +16 beschrieben werden ( 0 ≤ t ≤ 7 in min nach Beobachtungsbeginn, f(t) in m³/min). Zu Beginn sind 30 m³ Wasser im Tank.

  1. Bestimme die minimale Änderungsrate des Wasservolumens.
  2. Wann nimmt die Änderungsrate des Wasservolumens am stärksten ab?
  3. Um wieviel m³ Wasser ändert sich das Wasservolumen zwischen Minute 0 und Minute 3?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert des Minimums (TP)

    Gesucht ist der y-Wert des Tiefpunkt. Wir berechnen also die Extremstellen von f:

    Detail-Rechnung für den Tiefpunkt ( 14 3 |3.3) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = 1 4 0 3 - 7 4 0 2 +16 = 16 . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f(7) = 1 4 7 3 - 7 4 7 2 +16 = 16 .

    Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f(0) = 16 .

    3.3 ist also der kleinste Wert der Funktion.


  2. t-Wert bei der stärksten Abnahme

    Gesucht ist der t-Wert des Tiefpunkt der Ableitung.

    Dazu berechnen wir erstmal die Ableitungsfunktion f':

    f'(t)= 3 4 x 2 - 7 2 x +0

    = 1 4 x ( 3x -14 )

    Wir berechnen also die Extremstellen von f':

    Detail-Rechnung für den Tiefpunkt der Ableitung ( 7 3 |-4.08) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) = 1 4 · 0 · ( 30 -14 ) = 0. Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f'(7) = 1 4 · 7 · ( 37 -14 ) = 49 4 .

    Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f'(0) = 0 .

    Bei t = 7 3 ist also der kleinste Wert der Ableitungsfunktion.

  3. Zuwachs des Bestands zwischem 0 und 3

    Gesucht ist ja der Zuwachs des Bestands zwischen t1=0 und t2=3 und weil ja f die Änderungsrate des Bestands angibt, kann dieser Zuwachs des Bestands mit dem Integral 0 3 ( 1 4 t 3 - 7 4 t 2 +16 ) t berechnet werden.

    0 3 ( 1 4 t 3 - 7 4 t 2 +16 ) t

    = [ 1 16 x 4 - 7 12 x 3 +16x ] 0 3

    = 1 16 3 4 - 7 12 3 3 +163 - ( 1 16 0 4 - 7 12 0 3 +160 )

    = 1 16 81 - 7 12 27 +48 - ( 1 16 0 - 7 12 0 +0)

    = 81 16 - 63 4 +48 - (0+0+0)

    = 81 16 - 252 16 + 768 16 +0

    = 597 16


    ≈ 37,313

    37.31 m³ ist also der gesuchte Zuwachs des Bestands.