Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(-2|0)
  • Verhalten für x → -∞: f(x) → -∞
  • Verhalten für x → ∞: f(x) → 0

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +2 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → +∞ : f(x) → 0 strebt und gleichzeitig für x → -∞ : f(x) → ± ∞ strebt, kennen wir doch von e-x. Also multiplizieren wir einfach mal ein e-x zu unserem bisherigen Term dazu: f(x)= ( x +2 ) · e -x . Jetzt strebt auch tatsächlich für x → -∞ : f(x) gegen -∞, so dass wir einen gesuchten Term gefunden haben:
f(x)= ( x +2 ) · e -x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= 3 e x .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Am Koeffizient vor dem e x erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion lediglich in y-Richtung gestreckt wurde. Qualitativ unterscheiden sich die beiden Graphen also nicht. Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte sind >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden immer größer. Die Funktion ist also streng monoton steigend.
  • Wie e x strebt für x → ∞ auch 3 e x gegen ∞.
  • Wie e x strebt für x → -∞ auch 3 e x gegen 0 .

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= x 4 +2 x 2 -3 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

x 4 +2 x 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

u1,2 = -2 ± 4 +12 2

u1,2 = -2 ± 16 2

u1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

u2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -3

x 2 = -3 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Wenn wir den substituierten Term u 2 +2u -3 anschauen, können wir ja auch den erst mal noch faktorisieren:

x 4 +2 x 2 -3 =nach Substitution u 2 +2u -3 = ( u -1 ) · ( u +3 ) =nach Re-Substitution ( -1 ) · ( +3 )

Somit gilt für die faktorisierte Darstellung:

f(x)= ( x +1 ) · ( x -1 ) · ( x 2 +3 ) = x 4 +2 x 2 -3

Anwendungen

Beispiel:

Eine neue trendy App wird veröffentlicht. Dabei kann die tägliche Downloadzahl (in K) näherungsweise für 0 ≤ t ≤ 4 durch die Funktion f mit f(t)= t 3 -4 t 2 +10 beschrieben werden; f(t) in Tausend Downloads, t in Tagen nach Beobachtungsbeginn bzw. Veröffentlichung.

  1. Wie viele Downloads (in Tausend) werden am Tag 3 heruntergeladen?.
  2. Wann werden die wenigsten Downloads heruntergeladen?
  3. Wann nimmt die tägliche Downloadzahl am stärksten ab?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 3

    Gesucht ist der Funktionswert zur Zeit t=3. Wir berechnen also einfach f(3) = 3 3 -4 3 2 +10 = 1


  2. t-Wert des Minimums (TP)

    Gesucht ist der t-Wert des Tiefpunkt. Wir berechnen also die Extremstellen von f:

    Detail-Rechnung für den Tiefpunkt ( 8 3 |0.52) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f(0) = 0 3 -4 0 2 +10 = 10 . Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f(4) = 4 3 -4 4 2 +10 = 10 .

    Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f(0) = 10 .

    Bei t = 8 3 ist also der kleinste Wert der Funktion.


  3. t-Wert bei der stärksten Abnahme

    Gesucht ist der t-Wert des Tiefpunkt der Ableitung.

    Dazu berechnen wir erstmal die Ableitungsfunktion f':

    f'(t)= 3 x 2 -8x +0

    = x ( 3x -8 )

    Wir berechnen also die Extremstellen von f':

    Detail-Rechnung für den Tiefpunkt der Ableitung ( 4 3 |-5.33) einblenden

    Randwertuntersuchung

    Da ja ein maximaler Wert, also ein globales Maximum gesucht wird, müssen wir noch untersuchen, ob vielleicht an den Rändern noch höhere Werte als beim lokalen Maximum auftreten.

    Dazu setzen wir am linken Rand einfach die linke Grenze des Definitionsbereichs in die Funktion ein: f'(0) = 0 · ( 30 -8 ) = 0. Am rechten Rand setzen wir die rechte Grenze des Definitionsbereichs ein: f'(4) = 4 · ( 34 -8 ) = 16 .

    Weil der Funktionswert am linken Rand größer als am Hochpunkt ist, ist das (globale) Maximum bei 0 mit f'(0) = 0 .

    Bei t = 4 3 ist also der kleinste Wert der Ableitungsfunktion.