Aufgabenbeispiele von allgemein
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Term mit Eigenschaften finden
Beispiel:
Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:
- gemeinsame Punkte mit der x-Achse: N1(0|0) und N2(2|0)
- Verhalten für x → ∞: f(x) → -∞
Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also .
Jetzt betrachten wir das Verhalten für x → ± ∞ :
Da bei unserem bisherigen Term
=
für x → +∞ : f(x) gegen +∞ und nicht wie
gefordert gegen -∞ strebt, müssen wir den Term noch mit -1 multiplizieren, damit er alle Eigenschaften erfüllt:
=
Dieser funktionierende Term ist im roten Graphen eingezeichnet
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei
einfach das x von
durch ein 'x
- Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
- Die Funktionswerte werden (von links nach rechts) immer größer . Die Funktion ist also streng monoton steigend.
- Wie strebt auch für x → ∞ gegen ∞ .
- Wie strebt auch für x → -∞ gegen 0 .
Nullstellen und Faktorisieren
Beispiel:
Bestimme alle Nullstellen der Funktion f mit und gib f in Linearfaktordarstellung an.
Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:
f(x)=0
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| = | | | ||
| x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
L={
Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.
Somit gilt für die faktorisierte Darstellung:
Anwendungen
Beispiel:
Ein Getränk wird aus dem Kühlschrank genommen und erwärmt sich. Die Temperatur des Getränks zur Zeit t kann für t ≥ 0 durch die Funktion f mit
- Welche Temperatur hat das Getränk langfristig?
- Wann hat das Getränk die Temperatur von 30 erreicht?
- Verhalten für t gegen unendlich
Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.
Für t → ∞ ⇒ f(t)=
→50 - 41 e - 0,4 t 50 + 0 Das langfristige Verhalten der Funktionswerte geht also gegen
.50 - Erster t-Wert bei y = 30
Gesucht sind die Zeitpunkte, an denen die Funktion die Werte y=30 annimmt.
Dazu setzen wir die Funktion einfach = 30 und lösen nach t auf:
50 - 41 e - 0,4 t = 30 - 41 e - 0,4 t + 50 = 30 | - 50 - 41 e - 0,4 t = - 20 |: - 41 e - 0,4 t = 20 41 |ln(⋅) - 0,4 t = ln ( 20 41 ) |: - 0,4 t = - 1 0.4 ln ( 20 41 ) ≈ 1.7946 Der erste Zeitpunkt an dem die die Funktion den Wert 30 annimmt, ist also nach 1.79 min.
