Aufgabenbeispiele von allgemein

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Term mit Eigenschaften finden

Beispiel:

Bestimme den Term einer Funktion, für dessen Graph folgende Bedingungen erfüllt sein müssen:

  • gemeinsamer Punkt mit der x-Achse: N(-2|0)
  • Verhalten für x → -∞: f(x) → -∞
  • Verhalten für x → ∞: f(x) → 0

Lösung einblenden

Als erstes stellen wir einen Term auf, der die geforderten Nullstellen besitzt. Dazu bekommt jede Nullstelle ihren Linearfaktor, also f(x)= x +2 .

Jetzt betrachten wir das Verhalten für x → ± ∞ :

Das Verhalten, dass für x → +∞ : f(x) → 0 strebt und gleichzeitig für x → -∞ : f(x) → ± ∞ strebt, kennen wir doch von e-x. Also multiplizieren wir einfach mal ein e-x zu unserem bisherigen Term dazu: f(x)= ( x +2 ) · e -x . Jetzt strebt auch tatsächlich für x → -∞ : f(x) gegen -∞, so dass wir einen gesuchten Term gefunden haben:
f(x)= ( x +2 ) · e -x

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Dieser funktionierende Term ist im roten Graphen eingezeichnet

Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e -x .

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e -x einfach das x von e x durch ein -x ersetzt wurde, erhält man den Graph von e -x indem man den der natürlichen Exponentialfunktion an der y-Achse spiegelt. Daraus ergeben sich folgende Aussagen:

  • Alle Funktionswerte bleiben so >0, also verläuft der Graph komplett über der x-Achse.
  • Die Funktionswerte werden (von links nach rechts) immer kleiner . Die Funktion ist also streng monoton fallend.
  • Wie e x für x → -∞ strebt e -x für x → ∞ gegen 0.
  • Wie e x für x → ∞ strebt e -x für x → -∞ gegen ∞ .

Nullstellen und Faktorisieren

Beispiel:

Bestimme alle Nullstellen der Funktion f mit f(x)= 2 x 6 -18 x 4 und gib f in Linearfaktordarstellung an.


Lösung einblenden

Nullstellen sind die x-Werte, an denen der Funktionswert 0 beträgt, es muss also gelten:

f(x)=0

2 x 6 -18 x 4 = 0
2 x 4 ( x 2 -9 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 4 = 0 | 4
x1 = 0

2. Fall:

x 2 -9 = 0 | +9
x 2 = 9 | 2
x2 = - 9 = -3
x3 = 9 = 3

L={ -3 ; 0; 3 }

0 ist 4-fache Lösung!

Eine Mehrfachheit der Nullstellen muss natürlich auch in der faktorisierten Darstellung berücksichtigt werden.

Auch der ausgeklammerte (oder wegdividierte) Faktor 2 darf natürlich nicht vergessen werden:

Somit gilt für die faktorisierte Darstellung:

f(x)= 2 x 4 · ( x +3 ) · ( x -3 ) = 2 x 6 -18 x 4

Anwendungen

Beispiel:

Die momentane Wachstumsrate der Höhe eines Baums kann für t ≥ 0 näherungsweise durch die Funktion f mit f(t)= 30 +19 e -0,4t beschrieben werden (t in Jahren nach Beobachtungsbeginn, f(t) in Dezimeter pro Jahr).
Zu Beginn ist der Baum 3 Dezimeter hoch.

  1. Bestimme die Wachstumsgeschwindigkeit nach 5 Jahren?
  2. Wie groß ist die Wachstumsgeschwindigkeit auf lange Sicht?
  3. Wie hoch ist der Baum nach 3 Jahren?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. y-Wert bei t = 5

    Gesucht ist der Funktionswert zur Zeit t=5. Wir berechnen also einfach f(5) = 30 +19 e -0,45 = 19 e -2 +30 ≈ 32.6


  2. Verhalten für t gegen unendlich

    Gesucht ist das Verhalten der Funktionswerte bei sehr großen t-Werten, also das Verhalten von f für t → ∞.

    Für t → ∞ ⇒ f(t)= 30 +19 e -0,4x 30 +0

    Das langfristige Verhalten der Funktionswerte geht also gegen 30 .

  3. Bestand zur Zeit 3

    Gesucht ist ja der Bestands zur Zeit t=3 und weil ja f die Änderungsrate des Bestands angibt, kann der Bestands zur Zeit t=3 als Summe vom Anfangsbestand 3 und dem Integral 0 3 ( 30 +19 e -0,4x ) x berechnet werden.

    Wir berechenn also zuerst das Integral:

    0 3 ( 30 +19 e -0,4x ) x

    = [ 30x - 95 2 e -0,4x ] 0 3

    = 303 - 95 2 e -0,43 - ( 300 - 95 2 e -0,40 )

    = 90 - 95 2 e -1,2 - (0 - 95 2 e 0 )

    = - 95 2 e -1,2 +90 - (0 - 95 2 )

    = - 95 2 e -1,2 +90 - (0 -47,5 )

    = - 95 2 e -1,2 +90 +47,5

    = - 95 2 e -1,2 +137,5


    ≈ 123,193

    Jetzt haben wir den Zuwachs und müssen nur noch den Anfangsbestand addieren:
    B(3)≈ 3 + 123.193 = 126.193

    126.19 dm ist also der gesuchte Bestand zur Zeit t=3.