Aufgabenbeispiele von mit e-Funktionen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


e-Funktionen einfach

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 + 3 5 e -3x und vereinfache:

Lösung einblenden

f(x)= 2 + 3 5 e -3x

f'(x)= 0 + 3 5 e -3x · ( -3 )

= - 9 5 e -3x

Ableiten e-Funktionen (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 2 · e -3x und vereinfache:

Lösung einblenden

f(x)= x 2 · e -3x

f'(x)= 2x · e -3x + x 2 · e -3x · ( -3 )

= 2 x · e -3x + x 2 · ( -3 e -3x )

= 2 x · e -3x -3 x 2 · e -3x

= e -3x · ( -3 x 2 +2x )

= ( -3 x 2 +2x ) · e -3x

e-Funktionen ableiten

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 3x +3 ) · e x und vereinfache:

Lösung einblenden

f(x)= ( 3x +3 ) · e x

f'(x)= ( 3 +0 ) · e x + ( 3x +3 ) · e x

= 3 e x + ( 3x +3 ) · e x

= e x · ( 3x +6 )

= ( 3x +6 ) · e x

Ableiten ln-Funktion

Beispiel:

Berechne die Ableitung von f mit f(x)= ln( - x 3 -4x ) und vereinfache:

Lösung einblenden

f(x)= ln( - x 3 -4x )

f'(x)= 1 - x 3 -4x · ( -3 x 2 -4 )

= -3 x 2 -4 - x 3 -4x

Ableiten (mit allem) LF

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 cos( x -2 ) und vereinfache:

Lösung einblenden

f(x)= 3 cos( x -2 )

f'(x)= -3 sin( x -2 )

Höhere Ableitungen e-Funkt'n

Beispiel:

Bestimme die 48-te Ableitung der Funktion f(x)= e 0,9x .

Lösung einblenden

Wir leiten f einfach mal ein paar mal ab und unteruschen, ob wir ein System erkennen können.

f(x) = e 0,9x

f'(x) = e 0,9x · 0,9 = 0,9 e 0,9x

f''(x) = 0,9 e 0,9x · 0,9 = 0,81 e 0,9x

f'''(x) = 0,81 e 0,9x · 0,9 = 0,729 e 0,9x

f(4)(x) = 0,729 e 0,9x · 0,9 = 0,6561 e 0,9x

...

Wir erkennen, dass der Funktionsterm bei jeder Ableitung mit 0,9 multipliziert wird. Bei der 48-ten Ableitung wurde also die Originalfunktion 48 mal mit 0,9 multipliziert, also insgeamt mit 0,9 48

Somit gilt für die 48-te Ableitung:

f(48)(x) = 0,9 48 · e 0,9x

= 0,0063626854411360 e 0,9x

typischen Anwendungsterm ableiten

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 ( x -4 ) · e -0,5x +8 und vereinfache:

Lösung einblenden

f(x)= 4 ( x -4 ) · e -0,5x +8

f'(x)= 4 · ( 1 +0 ) · e -0,5x +4 ( x -4 ) · e -0,5x · ( -0,5 )+0

= 4 e -0,5x +4 ( x -4 ) · ( -0,5 e -0,5x )

= 4 e -0,5x -2 ( x -4 ) · e -0,5x

= e -0,5x · ( -2x +12 )

= ( -2x +12 ) · e -0,5x