Aufgabenbeispiele von ganzrationale Fktn.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 9 x 3 - 1 2 x 2 und vereinfache:

Lösung einblenden

f(x)= 2 9 x 3 - 1 2 x 2

f'(x)= 2 3 x 2 - x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= - 5 x 3 und gib die Steigung von f an der Stelle x=1 an:

Lösung einblenden

f(x)= - 5 x 3

= -5 x -3

=> f'(x) = 15 x -4

=>f'(x)= 15 x 4

f'(1) = 15 1 4 = 151 = 15

Ableiten an einem Punkt (nur ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 x 2 +3 und gib die Steigung von f an der Stelle x=-1 an:

Lösung einblenden

f(x)= -5 x 2 +3

=>f'(x)= -10x +0

= -10x

f'(-1) = -10( -1 ) = 10

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= - cos( x ) + 1 x 3 und vereinfache:

Lösung einblenden

f(x)= - cos( x ) + 1 x 3

= - cos( x ) + x -3

=> f'(x) = sin( x ) -3 x -4

f'(x)= sin( x ) - 3 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 2 x 2 - 2 x und vereinfache:

Lösung einblenden

f(x)= - 1 2 x 2 - 2 x

= - 1 2 x 2 -2 x - 1 2

=> f'(x) = -x + x - 3 2

f'(x)= -x + 1 ( x ) 3

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 3 t x 3 +2x im Punkt (1|ft(1)) den Wert 20 ?

Lösung einblenden

f(x)= 3 t x 3 +2x

=>f'(x)= - 9 t x 4 +2

Jetzt setzen wir x = 1 in die Ableitungsfunktion f' ein:

= - 9 t 1 4 +2
= -9 t +2

Dieser Wert soll ja den Wert 20 besitzen, also gilt:

-9t +2 = 20 | -2
-9t = 18 |:(-9 )
t = -2

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - x 4 +2x -4 im Punkt P(0|f(0)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(0|f(0)).

Dazu leiten wir f erst ab und setzen dann x = 0 in die Ableitungsfunktion ein:

f(x)= - x 4 +2x -4

=>f'(x)= -4 x 3 +2 +0

f'(0) = -4 0 3 +2 = -40 +2 = 2

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(0)) = arctan( 2 )) ≈ 63.4°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -71.565° an die den Graph der Funktion f mit f(x)= x 2 -7x -8 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -71.565° ist, muss die Steigung dieser Tangente m = tan(-71.565°) ≈ -3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -3 gelten.

Wir leiten somit f mit f(x)= x 2 -7x -8 ab:

f'(x) = 2x -7

Es muss gelten:

2x -7 = -3 | +7
2x = 4 |:2
x = 2

Die gesuchte Stelle ist somit x0 ≈ 2.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -3 x 3 + t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr -78.69 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel -78.69 ° beträgt, muss fü die Steigung im Ursprung gelten:

m = tan(-78.69°) ≈ -5

Dieses m können wir ja aber auch in Abhängigikeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -3 x 3 + t x

=>f'(x)= -9 x 2 + t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

= -9 0 2 + t
= t

Dieser Wert soll ja ungefähr -5 betragen, also gilt:

t = -5

Als ganzzahligen Wert können wir somit t = -5 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 -5x +8 und g(x)= - x 2 -3x +20 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 -5x +8 = - x 2 -3x +20 | + x 2 +3x -20
2 x 2 -2x -12 = 0 |:2

x 2 - x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +1 ± 1 +24 2

x1,2 = +1 ± 25 2

x1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

x2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

L={ -2 ; 3 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 3 |f( 3 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 3 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x -5 , also gilt mf = f'( 3 )= 23 -5 = 1

g'(x)= -2x -3 , also gilt mg = g'( 3 )= -23 -3 = -9

Mit den Tangentsteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 3 |f( 3 ): α = arctan( 1 ) ≈ 45°

und für den Steigungswinkel von g in S( 3 |g( 3 ) gilt: β = arctan( -9 ) ≈ -83.7°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als die Differenz des größeren (und damit oberen) Steigungswinkel minus den kleineren (unteren) berechnen kann.

γ = α - β = 45° - ( - 83.7 )° ≈ 128.7°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 128.7° = 51.3° .

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 1 2 x 2 + 3 2 x -3 im Punkt P(0|f(0)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(0|f(0)).

Dazu leiten wir f erst ab und setzen dann x = 0 in die Ableitungsfunktion ein:

f(x)= - 1 2 x 2 + 3 2 x -3

=>f'(x)= -x + 3 2 +0

f'(0) = -0 + 3 2 = 3 2 ≈ 1.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(0)) = arctan( 3 2 )) ≈ 56.3°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -71.565° an die den Graph der Funktion f mit f(x)= 1 4 x 4 -2x -4 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -71.565° ist, muss die Steigung dieser Tangente m = tan(-71.565°) ≈ -3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -3 gelten.

Wir leiten somit f mit f(x)= 1 4 x 4 -2x -4 ab:

f'(x) = x 3 -2

Es muss gelten:

x 3 -2 = -3 | +2
x 3 = -1 | 3
x = - 1 3 = -1

Die gesuchte Stelle ist somit x0 ≈ -1.