Aufgabenbeispiele von ganzrationale Fktn.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 x 3 -2 und vereinfache:

Lösung einblenden

f(x)= 4 x 3 -2

f'(x)= 12 x 2 +0

= 12 x 2

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= - 7 3 x 2 und gib die Steigung von f an der Stelle x=0 an:

Lösung einblenden

f(x)= - 7 3 x 2

=>f'(x)= - 14 3 x

f'(0) = - 14 3 0 = 0

Ableiten an einem Punkt (nur ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 4 +2x und gib die Steigung von f an der Stelle x=0 an:

Lösung einblenden

f(x)= - x 4 +2x

=>f'(x)= -4 x 3 +2

f'(0) = -4 0 3 +2 = -40 +2 = 2

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 x 2 und vereinfache:

Lösung einblenden

f(x)= 2 x 2

= 2 x -2

=> f'(x) = -4 x -3

f'(x)= - 4 x 3

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 x und vereinfache:

Lösung einblenden

f(x)= -5 x

= -5 x 1 2

=> f'(x) = - 5 2 x - 1 2

f'(x)= - 5 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 10 x 2 +2 t x im Punkt (2|ft(2)) den Wert - 21 2 ?

Lösung einblenden

f(x)= 10 x 2 +2 t x

=>f'(x)= - 20 x 3 +2 t

Jetzt setzen wir x = 2 in die Ableitungsfunktion f' ein:

= - 20 2 3 +2 t
= - 5 2 +2 t

Dieser Wert soll ja den Wert - 21 2 besitzen, also gilt:

2t - 5 2 = - 21 2 |⋅ 2
2( 2t - 5 2 ) = -21
4t -5 = -21 | +5
4t = -16 |:4
t = -4

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 3 2 x 4 +2x im Punkt P(1|f(1)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(1|f(1)).

Dazu leiten wir f erst ab und setzen dann x = 1 in die Ableitungsfunktion ein:

f(x)= - 3 2 x 4 +2x

=>f'(x)= -6 x 3 +2

f'(1) = -6 1 3 +2 = -61 +2 = -6 +2 = -4

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(1)) = arctan( -4 )) ≈ -76°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 63.435° an die den Graph der Funktion f mit f(x)= 1 4 x 4 +10x +9 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 63.435° ist, muss die Steigung dieser Tangente m = tan(63.435°) ≈ 2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 2 gelten.

Wir leiten somit f mit f(x)= 1 4 x 4 +10x +9 ab:

f'(x) = x 3 +10

Es muss gelten:

x 3 +10 = 2 | -10
x 3 = -8 | 3
x = - 8 3 = -2

Die gesuchte Stelle ist somit x0 ≈ -2.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= - x 2 + 1 2 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr -63.43 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel -63.43 ° beträgt, muss fü die Steigung im Ursprung gelten:

m = tan(-63.43°) ≈ -2

Dieses m können wir ja aber auch in Abhängigikeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= - x 2 + 1 2 t x

=>f'(x)= -2x + 1 2 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

= -20 + 1 2 t
= 1 2 t

Dieser Wert soll ja ungefähr -2 betragen, also gilt:

1 2 t = -2 |⋅ 2
t = -4

Als ganzzahligen Wert können wir somit t = -4 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 -6 und g(x)= - x 2 +2x +6 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 -6 = - x 2 +2x +6 | + x 2 -2x -6
2 x 2 -2x -12 = 0 |:2

x 2 - x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +1 ± 1 +24 2

x1,2 = +1 ± 25 2

x1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

x2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

L={ -2 ; 3 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 3 |f( 3 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 3 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x , also gilt mf = f'( 3 )= 23 = 6

g'(x)= -2x +2 , also gilt mg = g'( 3 )= -23 +2 = -4

Mit den Tangentsteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 3 |f( 3 ): α = arctan( 6 ) ≈ 80.5°

und für den Steigungswinkel von g in S( 3 |g( 3 ) gilt: β = arctan( -4 ) ≈ -76°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als die Differenz des größeren (und damit oberen) Steigungswinkel minus den kleineren (unteren) berechnen kann.

γ = α - β = 80.5° - ( - 76 )° ≈ 156.5°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 156.5° = 23.5° .

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 1 4 x 2 + 1 2 x +1 im Punkt P(1|f(1)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(1|f(1)).

Dazu leiten wir f erst ab und setzen dann x = 1 in die Ableitungsfunktion ein:

f(x)= - 1 4 x 2 + 1 2 x +1

=>f'(x)= - 1 2 x + 1 2 +0

f'(1) = - 1 2 1 + 1 2 = - 1 2 + 1 2 = 0

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(1)) = arctan(0)) ≈ .

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 63.435° an die den Graph der Funktion f mit f(x)= 1 4 x 4 +10x -7 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 63.435° ist, muss die Steigung dieser Tangente m = tan(63.435°) ≈ 2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 2 gelten.

Wir leiten somit f mit f(x)= 1 4 x 4 +10x -7 ab:

f'(x) = x 3 +10

Es muss gelten:

x 3 +10 = 2 | -10
x 3 = -8 | 3
x = - 8 3 = -2

Die gesuchte Stelle ist somit x0 ≈ -2.