Aufgabenbeispiele von ganzrationale Fktn.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 5 x 5 - 1 2 x 4 und vereinfache:

Lösung einblenden

f(x)= 5 x 5 - 1 2 x 4

f'(x)= 25 x 4 -2 x 3

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= -9 cos( x ) und gib die Steigung von f an der Stelle x= 1 2 π an:

Lösung einblenden

f(x)= -9 cos( x )

=>f'(x)= 9 sin( x )

f'( 1 2 π ) = 9 sin( 1 2 π ) = 91 = 9

Ableiten an einem Punkt (nur ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x 2 -2x und gib die Steigung von f an der Stelle x=3 an:

Lösung einblenden

f(x)= 3 x 2 -2x

=>f'(x)= 6x -2

f'(3) = 63 -2 = 18 -2 = 16

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 x 3 und vereinfache:

Lösung einblenden

f(x)= 4 x 3

= 4 x -3

=> f'(x) = -12 x -4

f'(x)= - 12 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 x und vereinfache:

Lösung einblenden

f(x)= 2 x

= 2 x 1 2

=> f'(x) = x - 1 2

f'(x)= 1 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 5 x 4 +3 t x 3 im Punkt (-2|ft(-2)) den Wert -124 ?

Lösung einblenden

f(x)= 5 x 4 +3 t x 3

=>f'(x)= 20 x 3 +9 t x 2

Jetzt setzen wir x = -2 in die Ableitungsfunktion f' ein:

= 20 ( -2 ) 3 +9 t ( -2 ) 2
= -160 +36 t

Dieser Wert soll ja den Wert -124 besitzen, also gilt:

36t -160 = -124 | +160
36t = 36 |:36
t = 1

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 3 2 x 3 +2x -1 im Punkt P(1|f(1)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(1|f(1)).

Dazu leiten wir f erst ab und setzen dann x = 1 in die Ableitungsfunktion ein:

f(x)= - 3 2 x 3 +2x -1

=>f'(x)= - 9 2 x 2 +2 +0

f'(1) = - 9 2 1 2 +2 = - 9 2 1 +2 = - 9 2 +2 = - 5 2 ≈ -2.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(1)) = arctan( - 5 2 )) ≈ -68.2°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -71.565° an die den Graph der Funktion f mit f(x)= 3 4 x 4 +78x -1 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -71.565° ist, muss die Steigung dieser Tangente m = tan(-71.565°) ≈ -3 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -3 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -3 gelten.

Wir leiten somit f mit f(x)= 3 4 x 4 +78x -1 ab:

f'(x) = 3 x 3 +78

Es muss gelten:

3 x 3 +78 = -3 | -78
3 x 3 = -81 |:3
x 3 = -27 | 3
x = - 27 3 = -3

Die gesuchte Stelle ist somit x0 ≈ -3.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= 2 x 2 + t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 84.29 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 84.29 ° beträgt, muss fü die Steigung im Ursprung gelten:

m = tan(84.29°) ≈ 10.001

Dieses m können wir ja aber auch in Abhängigikeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= 2 x 2 + t x

=>f'(x)= 4x + t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

= 40 + t
= t

Dieser Wert soll ja ungefähr 10.001 betragen, also gilt:

t = 10,001

Als ganzzahligen Wert können wir somit t = 10 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 4 - x +1 und g(x)= - x 2 - x +3 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 4 - x +1 = - x 2 - x +3 | - ( - x 2 - x +3 )
x 4 + x 2 -2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = x 2

Draus ergibt sich die quadratische Gleichung:

u 2 + u -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

u1,2 = -1 ± 1 +8 2

u1,2 = -1 ± 9 2

u1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

u2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Rücksubstitution:

u1: x 2 = 1

x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

u2: x 2 = -2

x 2 = -2 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ -1 ; 1 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 1 |f( 1 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 1 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 4 x 3 -1 , also gilt mf = f'( 1 )= 4 1 3 -1 = 3

g'(x)= -2x -1 , also gilt mg = g'( 1 )= -21 -1 = -3

Mit den Tangentsteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 1 |f( 1 ): α = arctan( 3 ) ≈ 71.6°

und für den Steigungswinkel von g in S( 1 |g( 1 ) gilt: β = arctan( -3 ) ≈ -71.6°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als die Differenz des größeren (und damit oberen) Steigungswinkel minus den kleineren (unteren) berechnen kann.

γ = α - β = 71.6° - ( - 71.6 )° ≈ 143.2°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 143.2° = 36.8° .

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 1 4 x 4 - x +5 im Punkt P(-2|f(-2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-2|f(-2)).

Dazu leiten wir f erst ab und setzen dann x = -2 in die Ableitungsfunktion ein:

f(x)= 1 4 x 4 - x +5

=>f'(x)= x 3 -1 +0

f'(-2) = ( -2 ) 3 -1 = ( -8 ) -1 = -8 -1 = -9

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-2)) = arctan( -9 )) ≈ -83.7°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -63.435° an die den Graph der Funktion f mit f(x)= x 2 -6x +6 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -63.435° ist, muss die Steigung dieser Tangente m = tan(-63.435°) ≈ -2 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -2 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -2 gelten.

Wir leiten somit f mit f(x)= x 2 -6x +6 ab:

f'(x) = 2x -6

Es muss gelten:

2x -6 = -2 | +6
2x = 4 |:2
x = 2

Die gesuchte Stelle ist somit x0 ≈ 2.