Aufgabenbeispiele von ganzrationale Fktn.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 3 -5x und vereinfache:

Lösung einblenden

f(x)= - x 3 -5x

f'(x)= -3 x 2 -5

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= - 5 x 3 und gib die Steigung von f an der Stelle x=2 an:

Lösung einblenden

f(x)= - 5 x 3

= -5 x -3

=> f'(x) = 15 x -4

=>f'(x)= 15 x 4

f'(2) = 15 2 4 = 15( 1 16 ) = 15 16 ≈ 0.94

Ableiten an einem Punkt (nur ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 x 5 +4 und gib die Steigung von f an der Stelle x=1 an:

Lösung einblenden

f(x)= -3 x 5 +4

=>f'(x)= -15 x 4 +0

= -15 x 4

f'(1) = -15 1 4 = -151 = -15

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 x 2 und vereinfache:

Lösung einblenden

f(x)= 2 x 2

= 2 x -2

=> f'(x) = -4 x -3

f'(x)= - 4 x 3

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x und vereinfache:

Lösung einblenden

f(x)= 3 x

= 3 x 1 2

=> f'(x) = 3 2 x - 1 2

f'(x)= 3 2 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= - 6 x 3 +2 t x 2 im Punkt (2|ft(2)) den Wert - 55 8 ?

Lösung einblenden

f(x)= - 6 x 3 +2 t x 2

=>f'(x)= 18 x 4 +4 t x

Jetzt setzen wir x = 2 in die Ableitungsfunktion f' ein:

= 18 2 4 +4 t 2
= 9 8 +8 t

Dieser Wert soll ja den Wert - 55 8 besitzen, also gilt:

8t + 9 8 = - 55 8 |⋅ 8
8( 8t + 9 8 ) = -55
64t +9 = -55 | -9
64t = -64 |:64
t = -1

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= - 1 2 x 2 - 3 2 x +7 im Punkt P(-1|f(-1)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-1|f(-1)).

Dazu leiten wir f erst ab und setzen dann x = -1 in die Ableitungsfunktion ein:

f(x)= - 1 2 x 2 - 3 2 x +7

=>f'(x)= -x - 3 2 +0

f'(-1) = -( -1 ) - 3 2 = 1 - 3 2 = - 1 2 ≈ -0.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-1)) = arctan( - 1 2 )) ≈ -26.6°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 45° an die den Graph der Funktion f mit f(x)= 3 2 x 2 -11x -6 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 45° ist, muss die Steigung dieser Tangente m = tan(45°) ≈ 1 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 1 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 1 gelten.

Wir leiten somit f mit f(x)= 3 2 x 2 -11x -6 ab:

f'(x) = 3x -11

Es muss gelten:

3x -11 = 1 | +11
3x = 12 |:3
x = 4

Die gesuchte Stelle ist somit x0 ≈ 4.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -2 x 2 + 1 3 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 63.43 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 63.43 ° beträgt, muss fü die Steigung im Ursprung gelten:

m = tan(63.43°) ≈ 2

Dieses m können wir ja aber auch in Abhängigikeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -2 x 2 + 1 3 t x

=>f'(x)= -4x + 1 3 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

= -40 + 1 3 t
= 1 3 t

Dieser Wert soll ja ungefähr 2 betragen, also gilt:

1 3 t = 2 |⋅ 3
t = 6

Als ganzzahligen Wert können wir somit t = 6 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 -3 und g(x)= - x 2 +2x +1 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 -3 = - x 2 +2x +1 | + x 2 -2x -1
2 x 2 -2x -4 = 0 |:2

x 2 - x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

L={ -1 ; 2 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 2 |f( 2 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 2 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x , also gilt mf = f'( 2 )= 22 = 4

g'(x)= -2x +2 , also gilt mg = g'( 2 )= -22 +2 = -2

Mit den Tangentsteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 2 |f( 2 ): α = arctan( 4 ) ≈ 76°

und für den Steigungswinkel von g in S( 2 |g( 2 ) gilt: β = arctan( -2 ) ≈ -63.4°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als die Differenz des größeren (und damit oberen) Steigungswinkel minus den kleineren (unteren) berechnen kann.

γ = α - β = 76° - ( - 63.4 )° ≈ 139.4°

Die beiden Tangenten haben ja eigentlich zwei Schnittwinkel, die Nebenwinkel zueinander sind. Als Schnittwinkel wird im Normalfall immer der kleinere der beiden bezeichnet. Deswegen gilt für den Schnittwinkel γ* = 180° - 139.4° = 40.6° .

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 1 4 x 2 + 1 2 x im Punkt P(-2|f(-2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(-2|f(-2)).

Dazu leiten wir f erst ab und setzen dann x = -2 in die Ableitungsfunktion ein:

f(x)= 1 4 x 2 + 1 2 x

=>f'(x)= 1 2 x + 1 2

f'(-2) = 1 2 ( -2 ) + 1 2 = -1 + 1 2 = - 1 2 ≈ -0.5

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(-2)) = arctan( - 1 2 )) ≈ -26.6°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ 45° an die den Graph der Funktion f mit f(x)= 1 2 x 2 +2x +7 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = 45° ist, muss die Steigung dieser Tangente m = tan(45°) ≈ 1 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = 1 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = 1 gelten.

Wir leiten somit f mit f(x)= 1 2 x 2 +2x +7 ab:

f'(x) = x +2

Es muss gelten:

x +2 = 1 | -2
x = -1

Die gesuchte Stelle ist somit x0 ≈ -1.