Aufgabenbeispiele von Ketten- und Produktregel
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Kettenregel ohne e-Fktn (BF)
Beispiel:
			Berechne die Ableitung von f mit 			 und vereinfache:
Kettenregel ohne e-Fktn 2 (BF)
Beispiel:
			Berechne die Ableitung von f mit 			 und vereinfache:
=
=> f'(x) =
=
=
Kettenregel ohne e-Fktn 2 (LF)
Beispiel:
			Berechne die Ableitung von f mit 			 und vereinfache:
=
=> f'(x) =
=
=
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).
Wir können der Zeichnung rechts f(1) = -3 entnehmen.
Also gilt h(1) = g(f(1)) = g(-3)
g(-3) können wir auch wieder am (blauen) Graph ablesen: 
				h(1) = g(f(1)) = g(-3) = 2.
Verkettung rückwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 2 gilt.
Wenn wir auf der y-Achse bei y = 2 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit
				P(2|2), der auf dem Graph von g liegt, also gilt: 
				2 = g(2)
Wegen 2 = h(x)= g(f(x))= g(2) gilt also f(x) = 2.
Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =2 sind.
Diese erkennen wir bei Q1(2|2) und Q2(-2|2), also bei 
				x1 = 2 und x2 = -2
Verkettung von f und f' (ohne F)
Beispiel:
Bestimme f(f '(-1)).
Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = entnehmen.
Wir suchen also f(f '(-1)) = f().
f() können wir aber auch wieder einfach am Schaubild ablesen 
(an der y-Koordinate des roten Punkts):
 f(f '(-1)) = f() = 
Verkettung vorwärts
Beispiel:
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).
Wir können der Zeichnung rechts f(0) = 0 entnehmen.
Also gilt h(0) = g(f(0)) = g(0)
g(0) können wir auch wieder am (blauen) Graph ablesen: 
				h(0) = g(f(0)) = g(0) = -2.
nur Produktregel ohne e-Fktn
Beispiel:
			Berechne die Ableitung von f mit 			 und vereinfache:
Ketten- und Produktregel (BF)
Beispiel:
			Berechne die Ableitung von f mit 			 und vereinfache:
=
=> f'(x) =
=
=
=
Ketten- und Produktregel (LF)
Beispiel:
			Berechne die Ableitung von f mit 			 und vereinfache:
=
=> f'(x) =
=
=
=
waagrechte Tang. bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit 			 
und der Graph einer Funktion g 		(in der Abblidung rechts). 
Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).
Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.
Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass
h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( )⋅g(x) + ( )⋅g'(x)
gilt.
Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.
Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:
Am Graph von g erkennen wir sofort, dass bei x = -1 sowohl eine Nullstelle als auch eine waagrechte
			Tangente vorliegt, 
es gilt also:  g(-1) = g'(-1) = 0.
Somit ist bei x = -1 in beiden Summanden der Produktregel eine Null als Faktor, 
es gilt also h'(-1) =  
				f'(-1)⋅g(-1) + f(-1)⋅g'(-1)  =  f'(-1)⋅0 + f(-1)⋅0 = 0.
Damit hat h an der Stelle x = -1 eine waagrechte Tangente.
Anzahl Nullstellen bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?
Zuerst bestimmen wir die Nullstellen der Funktion f:
| = | | | ||
|  | = | 
|  | = | | | |
|  | = |  | 
Das bedeutet, dass f(2)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
			Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
 Also müssen dies doch 
			gerade die x-Werte sein, für die g(x) = 2 gilt, denn dann gilt ja f(g(x)) = f( 2) = 0.
Wir schauen also am abgebildeten Graph, wieviel Lösungen die Gleichung g(x) = 2 besitzt.
Man erkennt - notfalls durch Einzeichnen eine Geraden y = 2, dass dies gerade 3 Schnittstellen sind.
Das heißt, dass diese 3 x-Werte dieser Schnittstellen alle Lösungen von f(g(x)) = f( 2) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.
waagrechte Tang. bei Verkettung
Beispiel:
Gegeben ist eine ganzrationale Funktion f mit 
und der Graph einer Funktion g 		(in der Abblidung rechts). 
Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.
Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.
Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Kettenregel wissen wir, dass für die Ableitung von h(x)=f(g(x)) gilt:
h'(x) = f'(g(x))⋅g'(x).
Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = 0 und bei 
			x = 4 sind.
 Der Extrempunkt des Graphs liegt bei x = 2, (also gilt g '(2) = 0).
Damit ist ja bereits ein Faktor des Kettenregelprodukts =0. Wenn wir also x = 2 in h'(x) einsetzen, erhalten wir: h'(2) = f'(g(2))⋅g'(2) = f'(g(2))⋅0 = 0.
Damit hat h an der Stelle x = 2 eine waagrechte Tangente.

 
				





