Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 526 + 224

Lösung einblenden
Die korrekte Antwort lautet:
526 + 224 = 750

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 2400 + 7097 + 32686 + 941

Lösung einblenden
Die korrekte Antwort lautet:
2400 + 7097 + 32686 + 941 = 43124

Schriftliche Rechnung:
2 4 0 0
+ 7 0 9 7
+ 3 2 6 8 6
+ 9 4 1
1 2 2 1
43124

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 325 - 100

Lösung einblenden
Die korrekte Antwort lautet:
325 - 100 = 225

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 43725 - 24814

Lösung einblenden
Die korrekte Antwort lautet:
43725 - 24814 = 18911

Schriftliche Rechnung:
43725
- 2 4 8 1 4
1 1
18911

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 7 ⋅ 16

Lösung einblenden
Die korrekte Antwort lautet:
7 ⋅ 16 = 112

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 608 ⋅ 326

Lösung einblenden
Die korrekte Antwort lautet:
608 ⋅ 326 = 198208

Schriftliche Rechnung:

608326
1824
1216
3648
1 1
198208

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 150 : 15

Lösung einblenden
Die korrekte Antwort lautet:
150 : 15 = 10

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 2896 : 8

Lösung einblenden
Die korrekte Antwort lautet:
2896 : 8 = 362

Schriftliche Rechnung:

2896:8=362
- 2 4
49
- 4 8
16
- 1 6
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 6, 4, 8, 1, 3, 2 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:

8, 6, 4, 3, 2, 1

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
842 + 631 = 1473

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
20 - ⬜ = 13

Lösung einblenden

20 - ⬜ = 13

Wenn man von 20 das Kästchen subtrahiert, erhält man 13. Also muss doch das Kästchen gerade der Unterschied zwischen 20 und 13 sein.

Somit gilt:
⬜ = 20 - 13 = 7

Das Kästchen muss also 7 sein, denn es gilt: 20 - 7 = 13

Rückwärtsrechnen verbal

Beispiel:

Durch welche Zahl muss man 22 dividieren, um 2 zu erhalten?

Lösung einblenden

"Durch welche Zahl muss man 22 dividieren, um 2 zu erhalten?" bedeutet ja:

22 : ⬜ = 2

Wenn man 22 durch das Kästchen teilt, erhält man 2. Also muss doch ⬜ ⋅ 2 = 22 gelten.

Man muss somit 22 durch 2 teilen um das Kästchen zu erhalten:

⬜ = 22 : 2 = 11

Das Kästchen muss also 11 sein, denn es gilt: 22 : 11 = 2

Anwendungen

Beispiel:

Karl möchte sich eine Playlist für Workouts erstellen. Sie soll genau eine halbe Stunde dauern. Auf die Playlist soll ein Lied von Robin Schulz, das 4 min dauert, ein Lied von Mark Foster mit 5 min, eins von Justin Bieber mit 5 min und ein Lied von Max Giesinger mit 3 min. Sein absolutes Lieblingslied von Bruno Mars, das 5 min lang ist, möchte er sogar zweimal auf seine Workout-Playlist draufmachen. Wie viele Minuten muss er noch füllen bis er seine Playlist fertig hat?

Lösung einblenden

Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:

4 min + 5 min + 5 min + 3 min + 2⋅ 5 min
= 4 min + 5 min + 5 min + 3 min + 10 min
= 27 min

Jetzt müssen wir diese Summe von 30 min abziehen: 30 min - 27 min = 3 min

Die noch freie Zeit seiner Playlist ist also 3 min