Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 463 + 379

Lösung einblenden
Die korrekte Antwort lautet:
463 + 379 = 842

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 56521 + 82078 + 34934

Lösung einblenden
Die korrekte Antwort lautet:
56521 + 82078 + 34934 = 173533

Schriftliche Rechnung:
5 6 5 2 1
+ 8 2 0 7 8
+ 3 4 9 3 4
1 1 1 1 1
173533

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 374 - 233

Lösung einblenden
Die korrekte Antwort lautet:
374 - 233 = 141

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 49012 - 21959 - 24978

Lösung einblenden
Die korrekte Antwort lautet:
49012 - 21959 - 24978 = 2075

Schriftliche Rechnung:
49012
- 2 1 9 5 9
- 2 4 9 7 8
2 2 2
2075

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 8 ⋅ 9

Lösung einblenden
Die korrekte Antwort lautet:
8 ⋅ 9 = 72

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 263 ⋅ 640

Lösung einblenden
Die korrekte Antwort lautet:
263 ⋅ 640 = 168320

Schriftliche Rechnung:

263640
1578
1052
0
1
168320

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 234 : 18

Lösung einblenden
Die korrekte Antwort lautet:
234 : 18 = 13

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 1078 : 7

Lösung einblenden
Die korrekte Antwort lautet:
1078 : 7 = 154

Schriftliche Rechnung:

1078:7=154
- 7
37
- 3 5
28
- 2 8
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 5, 8, 3, 4, 7, 2 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:

8, 7, 5, 4, 3, 2

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
853 + 742 = 1595

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
⬜ + 24 = 31

Lösung einblenden

⬜ + 24 = 31

Wenn man zum Kästchen 24 addiert, erhält man 31. Also muss doch das Kästchen um 24 kleiner sein als 31.

Somit gilt:
⬜ = 31 - 24 = 7

Das Kästchen muss also 7 sein, denn es gilt: 7 + 24 = 31

Rückwärtsrechnen verbal

Beispiel:

Wie viel muss man zu 6 addieren, um 19 zu erhalten?

Lösung einblenden

"Wie viel muss man zu 6 addieren, um 19 zu erhalten?" bedeutet ja:

6 + ⬜ = 19

Wenn man zum Kästchen 6 addiert, erhält man 19. Also muss doch das Kästchen um 6 kleiner sein als 19.

Somit gilt:
⬜ = 19 - 6 = 13

Das Kästchen muss also 13 sein, denn es gilt: 6 + 13 = 19

Anwendungen

Beispiel:

Zwei engagierte Klassensprecher wollen selbständig eine Klassenfahrt für ihre Klasse mit 25 Schülerinnen und Schüler organisieren. Dafür buchen sie eine Busfahrt für 600€. Der Eintritt in einen Freizeitpark kostet pro Person 8€. Der Eintritt ins Museum kostet eigentlich 5€ pro Person. Dort konnten sie aber zwei Freikarten raushandeln.
Die beiden Klassensprecher haben von jedem der 25 Schülerinnen und Schüler 40€ eingesammelt, um alle Kosten davon zu bezahlen. Wieviel € müsste nach der Klassenfahrt noch in der Klassenkasse sein?

Lösung einblenden

Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:

600 € + 25⋅ 8 € + 23⋅ 5 €
= 600 € + 200 € + 115 €
= 915 €

Der Betrag von dem diese Summe abgezogen werden muss, ist 25 ⋅ 40€ = 1000 €.

Jetzt müssen wir diese Summe von 1000 € abziehen: 1000 € - 915 € = 85 €

Der Rest in der Klassenkasse ist also 85 €