Aufgabenbeispiele von Grundrechenarten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Addition (Kopfrechnen)
Beispiel:
Berechne die Summe (im Kopf): 319 + 250
319 + 250 = 569
Addition (schriftlich)
Beispiel:
Berechne die Summe schriftlich: 10986 + 48519
10986 + 48519 = 59505
Schriftliche Rechnung:
| 1 | 0 | 9 | 8 | 6 | |
| + | 4 | 8 | 5 | 1 | 9 |
| 1 | 1 | 1 | |||
| 5 | 9 | 5 | 0 | 5 |
Subtraktion (Kopfrechnen)
Beispiel:
Berechne die Differenz (im Kopf): 360 - 90
360 - 90 = 270
Subtraktion (schriftlich)
Beispiel:
Berechne die Differenz schriftlich: 38849 - 356 - 9112 - 20745
38849 - 356 - 9112 - 20745 = 8636
Schriftliche Rechnung:
| 3 | 8 | 8 | 4 | 9 | |
| - | 3 | 5 | 6 | ||
| - | 9 | 1 | 1 | 2 | |
| - | 2 | 0 | 7 | 4 | 5 |
| 1 | 1 | 1 | 1 | ||
| 8 | 6 | 3 | 6 |
Multiplikation (Kopfrechnen)
Beispiel:
Berechne das Produkt (im Kopf): 5 ⋅ 19
5 ⋅ 19 = 95
Multiplikation (schriftlich)
Beispiel:
Berechne das Produkt (schriftlich oder im Kopf): 710 ⋅ 380
710 ⋅ 380 = 269800
Schriftliche Rechnung:
| 7 | 1 | 0 | ⋅ | 3 | 8 | 0 | ||
| 2 | 1 | 3 | 0 | |||||
| 5 | 6 | 8 | 0 | |||||
| 0 | ||||||||
| 2 | 6 | 9 | 8 | 0 | 0 |
Division (Kopfrechnen)
Beispiel:
Berechne den Quotienten im Kopf: 54 : 3
54 : 3 = 18
Division (schriftlich)
Beispiel:
Berechne den Quotienten (schriftlich oder im Kopf): 3235 : 5
3235 : 5 = 647
Schriftliche Rechnung:
| 3 | 2 | 3 | 5 | : | 5 | = | 6 | 4 | 7 | ||
| - | 3 | 0 | |||||||||
| 2 | 3 | ||||||||||
| - | 2 | 0 | |||||||||
| 3 | 5 | ||||||||||
| - | 3 | 5 | |||||||||
| 0 |
Min bzw. Max einer Summe
Beispiel:
Verteile die sechs Ziffern 8, 1, 2, 5, 7, 9 auf zwei dreistellige Zahlen so, dass ihre Summe am kleinsten wird.
Berechne dann diese Summe.
Wir sortieren zuerst die Ziffern in aufsteigender Reihenfolge:
1, 2, 5, 7, 8, 9
Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst kleine Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden kleinsten Ziffern und an der Einer-Stelle die beiden größten Ziffern stehen.
Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.
Wir verteilen also die Ziffern in aufsteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
158 + 279 = 437
Kästchenaufgabe (Rückwärts rechnen)
Beispiel:
Was muss in das Kästchen?
⬜ :
⬜ :
Wenn man das Kästchen durch 16 teilt, erhält man 2. Also muss doch das Kästchen das 16-fache von 2 sein.
Somit gilt:
⬜ = 2 ⋅ 16 = 32
Das Kästchen muss also 32 sein, denn es gilt:
32 :
Rückwärtsrechnen verbal
Beispiel:
Durch welche Zahl muss man 21 dividieren, um 3 zu erhalten?
"Durch welche Zahl muss man 21 dividieren, um 3 zu erhalten?" bedeutet ja:
21 : ⬜ = 3
Wenn man 21 durch das Kästchen teilt, erhält man 3. Also muss doch ⬜ ⋅ 3 = 21 gelten.
Man muss somit 21 durch 3 teilen um das Kästchen zu erhalten:
⬜ = 21 : 3 = 7
Das Kästchen muss also 7 sein, denn es gilt:
21 :
Anwendungen
Beispiel:
Fred geht einkaufen. Dabei kauft er 5 Packungen Chips à 2€, 2 Schalen Erdbeeren à 4€, 3 Flaschen Mineralwasser à 1€ und 3 Becher veganen Yoghurt à 2€. Er bezahlt mit einem 50-€ Schein. Wie viel bekommt er wieder raus?
Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:
5⋅ 2 € + 2⋅ 4 € + 3⋅ 1 € + 3⋅ 2 €
= 10 € + 8 € + 3 € + 6 €
= 27 €
Jetzt müssen wir diese Summe von 50 € abziehen: 50 € - 27 € = 23 €
Das Wechselgeld ist also 23 €