Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 270 + 129

Lösung einblenden
Die korrekte Antwort lautet:
270 + 129 = 399

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 62159 + 4176 + 44881

Lösung einblenden
Die korrekte Antwort lautet:
62159 + 4176 + 44881 = 111216

Schriftliche Rechnung:
6 2 1 5 9
+ 4 1 7 6
+ 4 4 8 8 1
1 1 1 2 1
111216

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 306 - 47

Lösung einblenden
Die korrekte Antwort lautet:
306 - 47 = 259

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 10206 - 1607

Lösung einblenden
Die korrekte Antwort lautet:
10206 - 1607 = 8599

Schriftliche Rechnung:
10206
- 1 6 0 7
1 1 1 1
8599

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 8 ⋅ 20

Lösung einblenden
Die korrekte Antwort lautet:
8 ⋅ 20 = 160

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 733 ⋅ 605

Lösung einblenden
Die korrekte Antwort lautet:
733 ⋅ 605 = 443465

Schriftliche Rechnung:

733605
4398
0
3665
1 1
443465

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 80 : 5

Lösung einblenden
Die korrekte Antwort lautet:
80 : 5 = 16

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 2970 : 10

Lösung einblenden
Die korrekte Antwort lautet:
2970 : 10 = 297

Schriftliche Rechnung:

2970:10=297
- 2 0
97
- 9 0
70
- 7 0
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 5, 4, 1, 3, 7, 2 auf zwei dreistellige Zahlen so, dass ihre Summe am kleinsten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in aufsteigender Reihenfolge:

1, 2, 3, 4, 5, 7

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst kleine Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden kleinsten Ziffern und an der Einer-Stelle die beiden größten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in aufsteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
135 + 247 = 382

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
⬜ : 13 = 3

Lösung einblenden

⬜ : 13 = 3

Wenn man das Kästchen durch 13 teilt, erhält man 3. Also muss doch das Kästchen das 13-fache von 3 sein.

Somit gilt:
⬜ = 3 ⋅ 13 = 39

Das Kästchen muss also 39 sein, denn es gilt: 39 : 13 = 3

Rückwärtsrechnen verbal

Beispiel:

Von welcher Zahl muss man 3 subtrahieren, um 37 zu erhalten?

Lösung einblenden

"Von welcher Zahl muss man 3 subtrahieren, um 37 zu erhalten?" bedeutet ja:

⬜ - 3 = 37

Wenn man vom Kästchen 3 subtrahiert, erhält man 37. Also muss doch das Kästchen um 3 größer sein als 37.

Somit gilt:
⬜ = 37 + 3 = 40

Das Kästchen muss also 40 sein, denn es gilt: 40 - 3 = 37

Anwendungen

Beispiel:

Zwei engagierte Klassensprecher wollen selbständig eine Klassenfahrt für ihre Klasse mit 16 Schülerinnen und Schüler organisieren. Dafür buchen sie eine Busfahrt für 500€. Der Eintritt in einen Freizeitpark kostet pro Person 12€. Der Eintritt ins Museum kostet eigentlich 3€ pro Person. Dort konnten sie aber zwei Freikarten raushandeln.
Die beiden Klassensprecher haben von jedem der 16 Schülerinnen und Schüler 50€ eingesammelt, um alle Kosten davon zu bezahlen. Wieviel € müsste nach der Klassenfahrt noch in der Klassenkasse sein?

Lösung einblenden

Wir berechnen erst die Summe (von den Produkten) aus der Aufgabe:

500 € + 16⋅ 12 € + 14⋅ 3 €
= 500 € + 192 € + 42 €
= 734 €

Der Betrag von dem diese Summe abgezogen werden muss, ist 16 ⋅ 50€ = 800 €.

Jetzt müssen wir diese Summe von 800 € abziehen: 800 € - 734 € = 66 €

Der Rest in der Klassenkasse ist also 66 €