Aufgabenbeispiele von Grundrechenarten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addition (Kopfrechnen)

Beispiel:

Berechne die Summe (im Kopf): 398 + 558

Lösung einblenden
Die korrekte Antwort lautet:
398 + 558 = 956

Addition (schriftlich)

Beispiel:

Berechne die Summe schriftlich: 599 + 1367 + 2682

Lösung einblenden
Die korrekte Antwort lautet:
599 + 1367 + 2682 = 4648

Schriftliche Rechnung:
5 9 9
+ 1 3 6 7
+ 2 6 8 2
1 2 1
4648

Subtraktion (Kopfrechnen)

Beispiel:

Berechne die Differenz (im Kopf): 528 - 72

Lösung einblenden
Die korrekte Antwort lautet:
528 - 72 = 456

Subtraktion (schriftlich)

Beispiel:

Berechne die Differenz schriftlich: 12832 - 2951

Lösung einblenden
Die korrekte Antwort lautet:
12832 - 2951 = 9881

Schriftliche Rechnung:
12832
- 2 9 5 1
1 1 1
9881

Multiplikation (Kopfrechnen)

Beispiel:

Berechne das Produkt (im Kopf): 4 ⋅ 8

Lösung einblenden
Die korrekte Antwort lautet:
4 ⋅ 8 = 32

Multiplikation (schriftlich)

Beispiel:

Berechne das Produkt (schriftlich oder im Kopf): 542 ⋅ 274

Lösung einblenden
Die korrekte Antwort lautet:
542 ⋅ 274 = 148508

Schriftliche Rechnung:

542274
1084
3794
2168
1 1 1
148508

Division (Kopfrechnen)

Beispiel:

Berechne den Quotienten im Kopf: 126 : 18

Lösung einblenden
Die korrekte Antwort lautet:
126 : 18 = 7

Division (schriftlich)

Beispiel:

Berechne den Quotienten (schriftlich oder im Kopf): 4023 : 9

Lösung einblenden
Die korrekte Antwort lautet:
4023 : 9 = 447

Schriftliche Rechnung:

4023:9=447
- 3 6
42
- 3 6
63
- 6 3
0

Min bzw. Max einer Summe

Beispiel:

Verteile die sechs Ziffern 2, 3, 4, 9, 7, 5 auf zwei dreistellige Zahlen so, dass ihre Summe am kleinsten wird.
Berechne dann diese Summe.

Lösung einblenden

Wir sortieren zuerst die Ziffern in aufsteigender Reihenfolge:

2, 3, 4, 5, 7, 9

Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst kleine Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden kleinsten Ziffern und an der Einer-Stelle die beiden größten Ziffern stehen.

Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.

Wir verteilen also die Ziffern in aufsteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
247 + 359 = 606

Kästchenaufgabe (Rückwärts rechnen)

Beispiel:

Was muss in das Kästchen?
⬜ - 26 = 34

Lösung einblenden

⬜ - 26 = 34

Wenn man vom Kästchen 26 subtrahiert, erhält man 34. Also muss doch das Kästchen um 26 größer sein als 34.

Somit gilt:
⬜ = 34 + 26 = 60

Das Kästchen muss also 60 sein, denn es gilt: 60 - 26 = 34

Rückwärtsrechnen verbal

Beispiel:

Zu welcher Zahl muss man 8 addieren, um 15 zu erhalten?

Lösung einblenden

"Zu welcher Zahl muss man 8 addieren, um 15 zu erhalten?" bedeutet ja:

⬜ + 8 = 15

Wenn man zum Kästchen 8 addiert, erhält man 15. Also muss doch das Kästchen um 8 kleiner sein als 15.

Somit gilt:
⬜ = 15 - 8 = 7

Das Kästchen muss also 7 sein, denn es gilt: 7 + 8 = 15

Anwendungen

Beispiel:

Gertrude möchte einen Kindergeburtstag auf der Bowlingbahn mit richtig vielen Gästen feiern. Dazu möchte sie 10 Mädchen und 2 Jungs aus ihrer Klasse einladen. Außerdem stehen noch 3 Kinder aus dem Sportverein und 4 von der Jugenkapelle des Musikvereins auf der Gästeliste. Nach dem Bowling soll dann ihr Vater alle Kinder zu ihr nach Hause fahren. Wie oft müsste ihr Vater fahren, wenn er immer 4 Kinder im Auto mitnehmen kann?

Lösung einblenden

Wir berechnen erst die Summe aus der Aufgabe:

1 + 10 + 2 + 3 + 4
= 20

Jetzt muss diese Summe noch durch 4 geteilt werden: 20 : 4 = 5

Die Anzahl der Fahrten des Vaters ist also 5