Aufgabenbeispiele von Linearfaktordarstellung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(3|0).

Also muss der Funktionsterm a · x · ( x -3 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a=-1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - x ( x -3 ) .

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4x +3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullsten. Also berechnen wir diese als erstes.

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

Der Funktionterm ( x -1 ) ( x -3 ) hat nun also genau die gleichen Nullstellen wie f(x)= x 2 -4x +3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist f(x)= ( x -1 ) ( x -3 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-2|0).

Also muss der Funktionsterm a · ( x +4 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-1).
Es gilt dann ja: f(-3)=-1,
also f(-3)= a · ( -3 +4 ) · ( -3 +2 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= ( x +4 ) ( x +2 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form f(x) = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(3|0).

Also muss der Funktionsterm a · ( x -1 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(2|1).
Es gilt dann ja: f(2)=1,
also f(2)= a · ( 2 -1 ) · ( 2 -3 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - ( x -1 ) ( x -3 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

f(x)= - ( x -1 ) ( x -3 )

= -( x · x + x · ( -3 ) -1 · x -1 · ( -3 ))

= -( x · x -3x - x +3 )

= -( x 2 -4x +3 )

= - x 2 +4x -3

Der gesuchte Funktionsterm in der Form f(x) = ax² + bx + c ist somit f(x)= - x 2 +4x -3

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullsten. Also berechnen wir diese als erstes.

3 x 2 -3 = 0 | +3
3 x 2 = 3 |:3
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

Für jedes a hat also der Funktionterm a · ( x +1 ) · ( x -1 ) genau die gleichen Nullstellen wie f(x)= 3 x 2 -3 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

f(x)= a · ( x +1 ) · ( x -1 )

= a · ( x · x + x · ( -1 ) + 1 · x + 1 · ( -1 ) )

= a · ( x · x - x + x -1 )

= a · ( x 2 -1 )

Für a = 3 ergibt sich also tatsächlich:

3( x 2 -1 ) = 3 x 2 -3 = f(x)

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: f(x)= 3 ( x +1 ) ( x -1 )