Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -50 = 0

Lösung einblenden
2 x 2 -50 = 0 | +50
2 x 2 = 50 |:2
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

100 -60x = -5 x 2

Lösung einblenden
-60x +100 = -5 x 2 | +5 x 2
5 x 2 -60x +100 = 0 |:5

x 2 -12x +20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 20 21

x1,2 = +12 ± 144 -80 2

x1,2 = +12 ± 64 2

x1 = 12 + 64 2 = 12 +8 2 = 20 2 = 10

x2 = 12 - 64 2 = 12 -8 2 = 4 2 = 2

L={ 2 ; 10 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +4x +3 = 0

Lösung einblenden

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

L={ -3 ; -1 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 +6x -8 = ( -4x +1 ) ( x +8 ) +39x -1

Lösung einblenden
-3 x 2 +6x -8 = ( -4x +1 ) ( x +8 ) +39x -1
-3 x 2 +6x -8 = -4 x 2 -31x +8 +39x -1
-3 x 2 +6x -8 = -4 x 2 +8x +7 | +4 x 2 -8x -7

x 2 -2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

L={ -3 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -10x +21 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -10x +21 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 21 21

x1,2 = +10 ± 100 -84 2

x1,2 = +10 ± 16 2

x1 = 10 + 16 2 = 10 +4 2 = 14 2 = 7

x2 = 10 - 16 2 = 10 -4 2 = 6 2 = 3

L={ 3 ; 7 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 3 |0) und N2( 7 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 +2x
und
g(x)= 4 x 2 + x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 +2x = 4 x 2 + x +2 | -4 x 2 - x -2

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 4 ( -2 ) 2 -2 +2 = 44 -2 +2 = 16 -2 +2 = 16

g( 1 ) = 4 1 2 +1 +2 = 41 +1 +2 = 4 +1 +2 = 7

Die Schnittpunkte sind also S1( -2 | 16 ) und S2( 1 | 7 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2x +15 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 4.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -4 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +0 ) · ( x -4 ) = x 2 -4x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -4x = -2x +15 | +2x -15

x 2 -2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

L={ -3 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -2( -3 ) +15 = 6 +15 = 21

g( 5 ) = -25 +15 = -10 +15 = 5

Die Schnittpunkte sind also S1( -3 | 21 ) und S2( 5 | 5 ).