Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 -21x -49 = 0

Lösung einblenden

4 x 2 -21x -49 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +21 ± ( -21 ) 2 -4 · 4 · ( -49 ) 24

x1,2 = +21 ± 441 +784 8

x1,2 = +21 ± 1225 8

x1 = 21 + 1225 8 = 21 +35 8 = 56 8 = 7

x2 = 21 - 1225 8 = 21 -35 8 = -14 8 = -1,75

L={ -1,75 ; 7 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

3x + x 2 -4 = 0

Lösung einblenden

x 2 +3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

L={ -4 ; 1 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -6x -3 = 0

Lösung einblenden
-3 x 2 -6x -3 = 0 |:3

- x 2 -2x -1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · ( -1 ) · ( -1 ) 2( -1 )

x1,2 = +2 ± 4 -4 -2

x1,2 = +2 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 -2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

9 x 2 -2x +2 = ( 8x -4 ) ( x +6 ) -46x +42

Lösung einblenden
9 x 2 -2x +2 = ( 8x -4 ) ( x +6 ) -46x +42
9 x 2 -2x +2 = 8 x 2 +44x -24 -46x +42
9 x 2 -2x +2 = 8 x 2 -2x +18 | -2
9 x 2 -2x = 8 x 2 -2x +16 | -8 x 2 +2x
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

L={ -4 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 2 x 2 +18x +16 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

2 x 2 +18x +16 = 0 |:2

x 2 +9x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -9 ± 9 2 -4 · 1 · 8 21

x1,2 = -9 ± 81 -32 2

x1,2 = -9 ± 49 2

x1 = -9 + 49 2 = -9 +7 2 = -2 2 = -1

x2 = -9 - 49 2 = -9 -7 2 = -16 2 = -8

L={ -8 ; -1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -8 |0) und N2( -1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -10x +7
und
g(x)= 2 x 2 -3x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -10x +7 = 2 x 2 -3x -3 | -2 x 2 +3x +3

x 2 -7x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 10 21

x1,2 = +7 ± 49 -40 2

x1,2 = +7 ± 9 2

x1 = 7 + 9 2 = 7 +3 2 = 10 2 = 5

x2 = 7 - 9 2 = 7 -3 2 = 4 2 = 2

L={ 2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = 2 2 2 -32 -3 = 24 -6 -3 = 8 -6 -3 = -1

g( 5 ) = 2 5 2 -35 -3 = 225 -15 -3 = 50 -15 -3 = 32

Die Schnittpunkte sind also S1( 2 | -1 ) und S2( 5 | 32 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 -2x .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 3.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -3 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +1 ) · ( x -3 ) = - x 2 +2x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +2x +3 = -2 x 2 -2x | +2 x 2 +2x

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

L={ -3 ; -1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -2 ( -3 ) 2 -2( -3 ) = -29 +6 = -18 +6 = -12

g( -1 ) = -2 ( -1 ) 2 -2( -1 ) = -21 +2 = -2 +2 = 0

Die Schnittpunkte sind also S1( -3 | -12 ) und S2( -1 |0).