Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -10x -12 = 0

Lösung einblenden
2 x 2 -10x -12 = 0 |:2

x 2 -5x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +5 ± 25 +24 2

x1,2 = +5 ± 49 2

x1 = 5 + 49 2 = 5 +7 2 = 12 2 = 6

x2 = 5 - 49 2 = 5 -7 2 = -2 2 = -1

L={ -1 ; 6 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -18 -16x = 0

Lösung einblenden
2 x 2 -16x -18 = 0 |:2

x 2 -8x -9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · ( -9 ) 21

x1,2 = +8 ± 64 +36 2

x1,2 = +8 ± 100 2

x1 = 8 + 100 2 = 8 +10 2 = 18 2 = 9

x2 = 8 - 100 2 = 8 -10 2 = -2 2 = -1

L={ -1 ; 9 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +3x -40 = 0

Lösung einblenden

x 2 +3x -40 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -40 ) 21

x1,2 = -3 ± 9 +160 2

x1,2 = -3 ± 169 2

x1 = -3 + 169 2 = -3 +13 2 = 10 2 = 5

x2 = -3 - 169 2 = -3 -13 2 = -16 2 = -8

L={ -8 ; 5 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

3 x 2 -8x -4 = ( 2x +3 ) ( x +2 ) -12x -12

Lösung einblenden
3 x 2 -8x -4 = ( 2x +3 ) ( x +2 ) -12x -12
3 x 2 -8x -4 = 2 x 2 +7x +6 -12x -12
3 x 2 -8x -4 = 2 x 2 -5x -6 | -2 x 2 +5x +6

x 2 -3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

L={ 1 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -11x +18 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -11x +18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +11 ± ( -11 ) 2 -4 · 1 · 18 21

x1,2 = +11 ± 121 -72 2

x1,2 = +11 ± 49 2

x1 = 11 + 49 2 = 11 +7 2 = 18 2 = 9

x2 = 11 - 49 2 = 11 -7 2 = 4 2 = 2

L={ 2 ; 9 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 2 |0) und N2( 9 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3x -23
und
g(x)= - x 2 -2x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3x -23 = - x 2 -2x -3 | + x 2 +2x +3

x 2 - x -20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

L={ -4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = - ( -4 ) 2 -2( -4 ) -3 = -16 +8 -3 = -11

g( 5 ) = - 5 2 -25 -3 = -25 -10 -3 = -38

Die Schnittpunkte sind also S1( -4 | -11 ) und S2( 5 | -38 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 + x +15 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 3.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -3 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +1 ) · ( x -3 ) = - x 2 +2x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +2x +3 = -2 x 2 + x +15 | +2 x 2 - x -15

x 2 + x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

L={ -4 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -2 ( -4 ) 2 -4 +15 = -216 -4 +15 = -32 -4 +15 = -21

g( 3 ) = -2 3 2 +3 +15 = -29 +3 +15 = -18 +3 +15 = 0

Die Schnittpunkte sind also S1( -4 | -21 ) und S2( 3 |0).