Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -6x +5 = 0

Lösung einblenden

x 2 -6x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

L={ 1 ; 5 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

16x -18 +2 x 2 = 0

Lösung einblenden
2 x 2 +16x -18 = 0 |:2

x 2 +8x -9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · ( -9 ) 21

x1,2 = -8 ± 64 +36 2

x1,2 = -8 ± 100 2

x1 = -8 + 100 2 = -8 +10 2 = 2 2 = 1

x2 = -8 - 100 2 = -8 -10 2 = -18 2 = -9

L={ -9 ; 1 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -48x -192 = 0

Lösung einblenden
-3 x 2 -48x -192 = 0 |:3

- x 2 -16x -64 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +16 ± ( -16 ) 2 -4 · ( -1 ) · ( -64 ) 2( -1 )

x1,2 = +16 ± 256 -256 -2

x1,2 = +16 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 16 -2 = -8

L={ -8 }

-8 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

- x 2 -9x -3 = ( -2x +8 ) ( x -8 ) -36x +59

Lösung einblenden
- x 2 -9x -3 = ( -2x +8 ) ( x -8 ) -36x +59
- x 2 -9x -3 = -2 x 2 +24x -64 -36x +59
- x 2 -9x -3 = -2 x 2 -12x -5 | +2 x 2 +12x +5

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +3x +2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -2 |0) und N2( -1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 +3x -2
und
g(x)= -5 x 2 +4x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 +3x -2 = -5 x 2 +4x +4 | +5 x 2 -4x -4

x 2 - x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +1 ± 1 +24 2

x1,2 = +1 ± 25 2

x1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

x2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

L={ -2 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -5 ( -2 ) 2 +4( -2 ) +4 = -54 -8 +4 = -20 -8 +4 = -24

g( 3 ) = -5 3 2 +43 +4 = -59 +12 +4 = -45 +12 +4 = -29

Die Schnittpunkte sind also S1( -2 | -24 ) und S2( 3 | -29 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +10x -15 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +0 ) · ( x -2 ) = - x 2 +2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +2x = -2 x 2 +10x -15 | +2 x 2 -10x +15

x 2 -8x +15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 15 21

x1,2 = +8 ± 64 -60 2

x1,2 = +8 ± 4 2

x1 = 8 + 4 2 = 8 +2 2 = 10 2 = 5

x2 = 8 - 4 2 = 8 -2 2 = 6 2 = 3

L={ 3 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = -2 3 2 +103 -15 = -29 +30 -15 = -18 +30 -15 = -3

g( 5 ) = -2 5 2 +105 -15 = -225 +50 -15 = -50 +50 -15 = -15

Die Schnittpunkte sind also S1( 3 | -3 ) und S2( 5 | -15 ).