Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -12x +16 = 0

Lösung einblenden
2 x 2 -12x +16 = 0 |:2

x 2 -6x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 8 21

x1,2 = +6 ± 36 -32 2

x1,2 = +6 ± 4 2

x1 = 6 + 4 2 = 6 +2 2 = 8 2 = 4

x2 = 6 - 4 2 = 6 -2 2 = 4 2 = 2

L={ 2 ; 4 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

45 + x 2 -14x = 0

Lösung einblenden

x 2 -14x +45 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +14 ± ( -14 ) 2 -4 · 1 · 45 21

x1,2 = +14 ± 196 -180 2

x1,2 = +14 ± 16 2

x1 = 14 + 16 2 = 14 +4 2 = 18 2 = 9

x2 = 14 - 16 2 = 14 -4 2 = 10 2 = 5

L={ 5 ; 9 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 7 2 x + 65 16 = 0

Lösung einblenden
x 2 - 7 2 x + 65 16 = 0 |⋅ 16
16( x 2 - 7 2 x + 65 16 ) = 0

16 x 2 -56x +65 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +56 ± ( -56 ) 2 -4 · 16 · 65 216

x1,2 = +56 ± 3136 -4160 32

x1,2 = +56 ± ( -1024 ) 32

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-6 x 2 -5x +4 = ( -7x -6 ) ( x -2 ) -13x -7

Lösung einblenden
-6 x 2 -5x +4 = ( -7x -6 ) ( x -2 ) -13x -7
-6 x 2 -5x +4 = -7 x 2 +8x +12 -13x -7
-6 x 2 -5x +4 = -7 x 2 -5x +5 | -4
-6 x 2 -5x = -7 x 2 -5x +1 | +7 x 2 +5x
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -1 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -1 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -8x +6
und
g(x)= 2 x 2 -3x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -8x +6 = 2 x 2 -3x +2 | -2 x 2 +3x -2

x 2 -5x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

L={ 1 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = 2 1 2 -31 +2 = 21 -3 +2 = 2 -3 +2 = 1

g( 4 ) = 2 4 2 -34 +2 = 216 -12 +2 = 32 -12 +2 = 22

Die Schnittpunkte sind also S1( 1 | 1 ) und S2( 4 | 22 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +5x -20 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -4 und x2 = 0.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +4 ) · ( x +0 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +4 ) · ( x +0 ) = - x 2 -4x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 -4x = -2 x 2 +5x -20 | +2 x 2 -5x +20

x 2 -9x +20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

L={ 4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = -2 4 2 +54 -20 = -216 +20 -20 = -32 +20 -20 = -32

g( 5 ) = -2 5 2 +55 -20 = -225 +25 -20 = -50 +25 -20 = -45

Die Schnittpunkte sind also S1( 4 | -32 ) und S2( 5 | -45 ).