Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +12x +36 = 0

Lösung einblenden

x 2 +12x +36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 1 · 36 21

x1,2 = -12 ± 144 -144 2

x1,2 = -12 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -12 2 = -6

L={ -6 }

-6 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +81 -18x = 0

Lösung einblenden

x 2 -18x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +18 ± ( -18 ) 2 -4 · 1 · 81 21

x1,2 = +18 ± 324 -324 2

x1,2 = +18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 18 2 = 9

L={ 9 }

9 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -4x +3 = 0

Lösung einblenden

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

L={ 1 ; 3 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

6 x 2 - x -6 = ( 5x -6 ) ( x +2 ) +3x -9

Lösung einblenden
6 x 2 - x -6 = ( 5x -6 ) ( x +2 ) +3x -9
6 x 2 - x -6 = 5 x 2 +4x -12 +3x -9
6 x 2 - x -6 = 5 x 2 +7x -21 | -5 x 2 -7x +21

x 2 -8x +15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 15 21

x1,2 = +8 ± 64 -60 2

x1,2 = +8 ± 4 2

x1 = 8 + 4 2 = 8 +2 2 = 10 2 = 5

x2 = 8 - 4 2 = 8 -2 2 = 6 2 = 3

L={ 3 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -2x +2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 2 21

x1,2 = +2 ± 4 -8 2

x1,2 = +2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6x +26
und
g(x)= - x 2 -4x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6x +26 = - x 2 -4x +1 | + x 2 +4x -1

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 -4( -5 ) +1 = -25 +20 +1 = -4

Der einzige Schnittpunkt ist also S( -5 | -4 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 9x +18 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -4 und x2 = -2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +4 ) · ( x +2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +4 ) · ( x +2 ) = x 2 +6x +8 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 +6x +8 = 9x +18 | -9x -18

x 2 -3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

L={ -2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 9( -2 ) +18 = -18 +18 = 0

g( 5 ) = 95 +18 = 45 +18 = 63

Die Schnittpunkte sind also S1( -2 |0) und S2( 5 | 63 ).