Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -5x -6 = 0

Lösung einblenden

x 2 -5x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +5 ± 25 +24 2

x1,2 = +5 ± 49 2

x1 = 5 + 49 2 = 5 +7 2 = 12 2 = 6

x2 = 5 - 49 2 = 5 -7 2 = -2 2 = -1

L={ -1 ; 6 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

4 x 2 -20x +25 = 0

Lösung einblenden

4 x 2 -20x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +20 ± ( -20 ) 2 -4 · 4 · 25 24

x1,2 = +20 ± 400 -400 8

x1,2 = +20 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 20 8 = 5 2

L={ 5 2 }

5 2 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +24x +74 = 0

Lösung einblenden
2 x 2 +24x +74 = 0 |:2

x 2 +12x +37 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 1 · 37 21

x1,2 = -12 ± 144 -148 2

x1,2 = -12 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -4x +3 = ( x +2 ) ( x +8 ) -17x -3

Lösung einblenden
2 x 2 -4x +3 = ( x +2 ) ( x +8 ) -17x -3
2 x 2 -4x +3 = x 2 +10x +16 -17x -3
2 x 2 -4x +3 = x 2 -7x +13 | - x 2 +7x -13

x 2 +3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

L={ -5 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +6x +9 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -3 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 +3x +5
und
g(x)= 5 x 2 + x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 +3x +5 = 5 x 2 + x +3 | -5 x 2 - x -3

x 2 +2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 2 21

x1,2 = -2 ± 4 -8 2

x1,2 = -2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 + x +2 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +0 ) · ( x -2 ) = - x 2 +2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +2x = -2 x 2 + x +2 | +2 x 2 - x -2

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -2 ( -2 ) 2 -2 +2 = -24 -2 +2 = -8 -2 +2 = -8

g( 1 ) = -2 1 2 +1 +2 = -21 +1 +2 = -2 +1 +2 = 1

Die Schnittpunkte sind also S1( -2 | -8 ) und S2( 1 | 1 ).