Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +2x +1 = 0

Lösung einblenden

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

6x +4 = -2 x 2

Lösung einblenden
6x +4 = -2 x 2 | +2 x 2
2 x 2 +6x +4 = 0 |:2

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 + 18 5 x + 9 5 = 0

Lösung einblenden
x 2 + 18 5 x + 9 5 = 0 |⋅ 5
5( x 2 + 18 5 x + 9 5 ) = 0

5 x 2 +18x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -18 ± 18 2 -4 · 5 · 9 25

x1,2 = -18 ± 324 -180 10

x1,2 = -18 ± 144 10

x1 = -18 + 144 10 = -18 +12 10 = -6 10 = -0,6

x2 = -18 - 144 10 = -18 -12 10 = -30 10 = -3

L={ -3 ; -0,6 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-6x -3 = ( -x -3 ) ( x -3 ) -12x -20

Lösung einblenden
-6x -3 = ( -x -3 ) ( x -3 ) -12x -20
-6x -3 = - x 2 +9 -12x -20
-6x -3 = - x 2 -12x -11 | + x 2 +12x +11

x 2 +6x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

L={ -4 ; -2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 2 x 2 +24x +72 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

2 x 2 +24x +72 = 0 |:2

x 2 +12x +36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 1 · 36 21

x1,2 = -12 ± 144 -144 2

x1,2 = -12 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -12 2 = -6

L={ -6 }

-6 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -6 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -11x +29
und
g(x)= 2 x 2 - x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -11x +29 = 2 x 2 - x +3 | -2 x 2 + x -3

x 2 -10x +26 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 26 21

x1,2 = +10 ± 100 -104 2

x1,2 = +10 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -5x +1 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 3.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -3 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +1 ) · ( x -3 ) = x 2 -2x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -2x -3 = -5x +1 | +5x -1

x 2 +3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

L={ -4 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -5( -4 ) +1 = 20 +1 = 21

g( 1 ) = -51 +1 = -5 +1 = -4

Die Schnittpunkte sind also S1( -4 | 21 ) und S2( 1 | -4 ).