Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +20x +18 = 0

Lösung einblenden
2 x 2 +20x +18 = 0 |:2

x 2 +10x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 9 21

x1,2 = -10 ± 100 -36 2

x1,2 = -10 ± 64 2

x1 = -10 + 64 2 = -10 +8 2 = -2 2 = -1

x2 = -10 - 64 2 = -10 -8 2 = -18 2 = -9

L={ -9 ; -1 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +4x +4 = 0

Lösung einblenden

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +9x +14 = 0

Lösung einblenden

x 2 +9x +14 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -9 ± 9 2 -4 · 1 · 14 21

x1,2 = -9 ± 81 -56 2

x1,2 = -9 ± 25 2

x1 = -9 + 25 2 = -9 +5 2 = -4 2 = -2

x2 = -9 - 25 2 = -9 -5 2 = -14 2 = -7

L={ -7 ; -2 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

8 x 2 -2x +3 = ( 7x -6 ) ( x -5 ) +39x -26

Lösung einblenden
8 x 2 -2x +3 = ( 7x -6 ) ( x -5 ) +39x -26
8 x 2 -2x +3 = 7 x 2 -41x +30 +39x -26
8 x 2 -2x +3 = 7 x 2 -2x +4 | -3
8 x 2 -2x = 7 x 2 -2x +1 | -7 x 2 +2x
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +5x + 25 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +5x + 25 4 = 0 |⋅ 4
4( x 2 +5x + 25 4 ) = 0

4 x 2 +20x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -20 ± 20 2 -4 · 4 · 25 24

x1,2 = -20 ± 400 -400 8

x1,2 = -20 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -20 8 = - 5 2

L={ - 5 2 }

- 5 2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( - 5 2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -3x -1
und
g(x)= -5 x 2 - x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -3x -1 = -5 x 2 - x +2 | +5 x 2 + x -2

x 2 -2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

L={ -1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = -5 ( -1 ) 2 - ( -1 ) +2 = -51 +1 +2 = -5 +1 +2 = -2

g( 3 ) = -5 3 2 - 3 +2 = -59 -3 +2 = -45 -3 +2 = -46

Die Schnittpunkte sind also S1( -1 | -2 ) und S2( 3 | -46 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +4x -2 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 1.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -1 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +1 ) · ( x -1 ) = - x 2 +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +1 = -2 x 2 +4x -2 | +2 x 2 -4x +2

x 2 -4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

L={ 1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = -2 1 2 +41 -2 = -21 +4 -2 = -2 +4 -2 = 0

g( 3 ) = -2 3 2 +43 -2 = -29 +12 -2 = -18 +12 -2 = -8

Die Schnittpunkte sind also S1( 1 |0) und S2( 3 | -8 ).