Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 + x -10 = 0

Lösung einblenden

2 x 2 + x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 2 · ( -10 ) 22

x1,2 = -1 ± 1 +80 4

x1,2 = -1 ± 81 4

x1 = -1 + 81 4 = -1 +9 4 = 8 4 = 2

x2 = -1 - 81 4 = -1 -9 4 = -10 4 = -2,5

L={ -2,5 ; 2 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

9 +2 x 2 = 9x

Lösung einblenden
2 x 2 +9 = 9x | -9x

2 x 2 -9x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 2 · 9 22

x1,2 = +9 ± 81 -72 4

x1,2 = +9 ± 9 4

x1 = 9 + 9 4 = 9 +3 4 = 12 4 = 3

x2 = 9 - 9 4 = 9 -3 4 = 6 4 = 1,5

L={ 1,5 ; 3 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -24x -48 = 0

Lösung einblenden
-3 x 2 -24x -48 = 0 |:3

- x 2 -8x -16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +8 ± ( -8 ) 2 -4 · ( -1 ) · ( -16 ) 2( -1 )

x1,2 = +8 ± 64 -64 -2

x1,2 = +8 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 8 -2 = -4

L={ -4 }

-4 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +7x -8 = ( 3x -7 ) ( x +9 ) -11x +55

Lösung einblenden
4 x 2 +7x -8 = ( 3x -7 ) ( x +9 ) -11x +55
4 x 2 +7x -8 = 3 x 2 +20x -63 -11x +55
4 x 2 +7x -8 = 3 x 2 +9x -8 | +8
4 x 2 +7x = 3 x 2 +9x | - ( 3 x 2 +9x )
4 x 2 -3 x 2 +7x -9x = 0
x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 27 2 x + 81 2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 27 2 x + 81 2 = 0 |⋅ 2
2( x 2 + 27 2 x + 81 2 ) = 0

2 x 2 +27x +81 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -27 ± 27 2 -4 · 2 · 81 22

x1,2 = -27 ± 729 -648 4

x1,2 = -27 ± 81 4

x1 = -27 + 81 4 = -27 +9 4 = -18 4 = -4,5

x2 = -27 - 81 4 = -27 -9 4 = -36 4 = -9

L={ -9 ; -4,5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -9 |0) und N2( -4,5 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 +8x +6
und
g(x)= 4 x 2 +4x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 +8x +6 = 4 x 2 +4x +2 | -4 x 2 -4x -2

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 4 ( -2 ) 2 +4( -2 ) +2 = 44 -8 +2 = 16 -8 +2 = 10

Der einzige Schnittpunkt ist also S( -2 | 10 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 8x -9 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -2 und x2 = 0.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +2 ) · ( x +0 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +2 ) · ( x +0 ) = x 2 +2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 +2x = 8x -9 | -8x +9

x 2 -6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

L={ 3 }

3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = 83 -9 = 24 -9 = 15

Der einzige Schnittpunkt ist also S( 3 | 15 ).