Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +6x +9 = 0

Lösung einblenden

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-50 + x 2 -5x = 0

Lösung einblenden

x 2 -5x -50 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · ( -50 ) 21

x1,2 = +5 ± 25 +200 2

x1,2 = +5 ± 225 2

x1 = 5 + 225 2 = 5 +15 2 = 20 2 = 10

x2 = 5 - 225 2 = 5 -15 2 = -10 2 = -5

L={ -5 ; 10 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 + 1 2 x + 17 16 = 0

Lösung einblenden
x 2 + 1 2 x + 17 16 = 0 |⋅ 16
16( x 2 + 1 2 x + 17 16 ) = 0

16 x 2 +8x +17 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 16 · 17 216

x1,2 = -8 ± 64 -1088 32

x1,2 = -8 ± ( -1024 ) 32

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

4 x 2 - x -5 = ( 3x +5 ) ( x +5 ) -20x -10

Lösung einblenden
4 x 2 - x -5 = ( 3x +5 ) ( x +5 ) -20x -10
4 x 2 - x -5 = 3 x 2 +20x +25 -20x -10
4 x 2 - x -5 = 3 x 2 +15 | -3 x 2 -15

x 2 - x -20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

L={ -4 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +4x +5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +4x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 5 21

x1,2 = -4 ± 16 -20 2

x1,2 = -4 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 x 2 + x +3
und
g(x)= -4 x 2 - x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 x 2 + x +3 = -4 x 2 - x +2 | +4 x 2 + x -2

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = -4 ( -1 ) 2 - ( -1 ) +2 = -41 +1 +2 = -4 +1 +2 = -1

Der einzige Schnittpunkt ist also S( -1 | -1 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +3x -6 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -2 und x2 = 0.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +2 ) · ( x +0 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +2 ) · ( x +0 ) = - x 2 -2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 -2x = -2 x 2 +3x -6 | +2 x 2 -3x +6

x 2 -5x +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 6 21

x1,2 = +5 ± 25 -24 2

x1,2 = +5 ± 1 2

x1 = 5 + 1 2 = 5 +1 2 = 6 2 = 3

x2 = 5 - 1 2 = 5 -1 2 = 4 2 = 2

L={ 2 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = -2 2 2 +32 -6 = -24 +6 -6 = -8 +6 -6 = -8

g( 3 ) = -2 3 2 +33 -6 = -29 +9 -6 = -18 +9 -6 = -15

Die Schnittpunkte sind also S1( 2 | -8 ) und S2( 3 | -15 ).