Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -7x +6 = 0

Lösung einblenden

x 2 -7x +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 6 21

x1,2 = +7 ± 49 -24 2

x1,2 = +7 ± 25 2

x1 = 7 + 25 2 = 7 +5 2 = 12 2 = 6

x2 = 7 - 25 2 = 7 -5 2 = 2 2 = 1

L={ 1 ; 6 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-4x +4 + x 2 = 0

Lösung einblenden

x 2 -4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

L={ 2 }

2 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -2x +2 = 0

Lösung einblenden

x 2 -2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 2 21

x1,2 = +2 ± 4 -8 2

x1,2 = +2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-7 x 2 +3x -9 = ( -8x -9 ) ( x -3 ) -15x -38

Lösung einblenden
-7 x 2 +3x -9 = ( -8x -9 ) ( x -3 ) -15x -38
-7 x 2 +3x -9 = -8 x 2 +15x +27 -15x -38
-7 x 2 +3x -9 = -8 x 2 -11 | +8 x 2 +11

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +7x -8 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +7x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -7 ± 7 2 -4 · 1 · ( -8 ) 21

x1,2 = -7 ± 49 +32 2

x1,2 = -7 ± 81 2

x1 = -7 + 81 2 = -7 +9 2 = 2 2 = 1

x2 = -7 - 81 2 = -7 -9 2 = -16 2 = -8

L={ -8 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -8 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= x +5
und
g(x)= - x 2 - x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x +5 = - x 2 - x +4 | + x 2 + x -4

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = - ( -1 ) 2 - ( -1 ) +4 = -1 +1 +4 = 4

Der einzige Schnittpunkt ist also S( -1 | 4 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -5x +1 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 3.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -3 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +1 ) · ( x -3 ) = x 2 -2x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -2x -3 = -5x +1 | +5x -1

x 2 +3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

L={ -4 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -5( -4 ) +1 = 20 +1 = 21

g( 1 ) = -51 +1 = -5 +1 = -4

Die Schnittpunkte sind also S1( -4 | 21 ) und S2( 1 | -4 ).