Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -14x -36 = 0

Lösung einblenden
2 x 2 -14x -36 = 0 |:2

x 2 -7x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · ( -18 ) 21

x1,2 = +7 ± 49 +72 2

x1,2 = +7 ± 121 2

x1 = 7 + 121 2 = 7 +11 2 = 18 2 = 9

x2 = 7 - 121 2 = 7 -11 2 = -4 2 = -2

L={ -2 ; 9 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 - x -30 = 0

Lösung einblenden

x 2 - x -30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -30 ) 21

x1,2 = +1 ± 1 +120 2

x1,2 = +1 ± 121 2

x1 = 1 + 121 2 = 1 +11 2 = 12 2 = 6

x2 = 1 - 121 2 = 1 -11 2 = -10 2 = -5

L={ -5 ; 6 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +2x -24 = 0

Lösung einblenden

x 2 +2x -24 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -24 ) 21

x1,2 = -2 ± 4 +96 2

x1,2 = -2 ± 100 2

x1 = -2 + 100 2 = -2 +10 2 = 8 2 = 4

x2 = -2 - 100 2 = -2 -10 2 = -12 2 = -6

L={ -6 ; 4 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-7 x 2 -6x +3 = ( -8x +4 ) ( x -7 ) -62x +36

Lösung einblenden
-7 x 2 -6x +3 = ( -8x +4 ) ( x -7 ) -62x +36
-7 x 2 -6x +3 = -8 x 2 +60x -28 -62x +36
-7 x 2 -6x +3 = -8 x 2 -2x +8 | +8 x 2 +2x -8

x 2 -4x -5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

x1,2 = +4 ± 16 +20 2

x1,2 = +4 ± 36 2

x1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

x2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

L={ -1 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 -8x -8 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 -8x -8 = 0 |:2

- x 2 -4x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = +4 ± 16 -16 -2

x1,2 = +4 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 -2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -12x +22
und
g(x)= 2 x 2 -3x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -12x +22 = 2 x 2 -3x +2 | -2 x 2 +3x -2

x 2 -9x +20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

L={ 4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = 2 4 2 -34 +2 = 216 -12 +2 = 32 -12 +2 = 22

g( 5 ) = 2 5 2 -35 +2 = 225 -15 +2 = 50 -15 +2 = 37

Die Schnittpunkte sind also S1( 4 | 22 ) und S2( 5 | 37 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 -4x +8 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -2 und x2 = 0.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +2 ) · ( x +0 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +2 ) · ( x +0 ) = - x 2 -2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 -2x = -2 x 2 -4x +8 | +2 x 2 +4x -8

x 2 +2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

L={ -4 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -2 ( -4 ) 2 -4( -4 ) +8 = -216 +16 +8 = -32 +16 +8 = -8

g( 2 ) = -2 2 2 -42 +8 = -24 -8 +8 = -8 -8 +8 = -8

Die Schnittpunkte sind also S1( -4 | -8 ) und S2( 2 | -8 ).