Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 -2x -8 = 0

Lösung einblenden

x 2 -2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

L={ -2 ; 4 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

18x +82 = - x 2

Lösung einblenden
18x +82 = - x 2 | + x 2

x 2 +18x +82 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -18 ± 18 2 -4 · 1 · 82 21

x1,2 = -18 ± 324 -328 2

x1,2 = -18 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -3x -18 = 0

Lösung einblenden

x 2 -3x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -18 ) 21

x1,2 = +3 ± 9 +72 2

x1,2 = +3 ± 81 2

x1 = 3 + 81 2 = 3 +9 2 = 12 2 = 6

x2 = 3 - 81 2 = 3 -9 2 = -6 2 = -3

L={ -3 ; 6 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

4 x 2 -4x -7 = ( 3x +1 ) ( x +8 ) -27x

Lösung einblenden
4 x 2 -4x -7 = ( 3x +1 ) ( x +8 ) -27x
4 x 2 -4x -7 = 3 x 2 +25x +8 -27x
4 x 2 -4x -7 = 3 x 2 -2x +8 | -3 x 2 +2x -8

x 2 -2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

L={ -3 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 13 2 x + 21 2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 13 2 x + 21 2 = 0 |⋅ 2
2( x 2 - 13 2 x + 21 2 ) = 0

2 x 2 -13x +21 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +13 ± ( -13 ) 2 -4 · 2 · 21 22

x1,2 = +13 ± 169 -168 4

x1,2 = +13 ± 1 4

x1 = 13 + 1 4 = 13 +1 4 = 14 4 = 3,5

x2 = 13 - 1 4 = 13 -1 4 = 12 4 = 3

L={ 3 ; 3,5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 3 |0) und N2( 3,5 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 +2x
und
g(x)= 4 x 2 - x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 +2x = 4 x 2 - x -2 | -4 x 2 + x +2

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 4 ( -2 ) 2 - ( -2 ) -2 = 44 +2 -2 = 16 +2 -2 = 16

g( -1 ) = 4 ( -1 ) 2 - ( -1 ) -2 = 41 +1 -2 = 4 +1 -2 = 3

Die Schnittpunkte sind also S1( -2 | 16 ) und S2( -1 | 3 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 5x +10 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -4 und x2 = -2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +4 ) · ( x +2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +4 ) · ( x +2 ) = x 2 +6x +8 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 +6x +8 = 5x +10 | -5x -10

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 5( -2 ) +10 = -10 +10 = 0

g( 1 ) = 51 +10 = 5 +10 = 15

Die Schnittpunkte sind also S1( -2 |0) und S2( 1 | 15 ).