Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

16 x 2 +48x +36 = 0

Lösung einblenden
16 x 2 +48x +36 = 0 |:4

4 x 2 +12x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 4 · 9 24

x1,2 = -12 ± 144 -144 8

x1,2 = -12 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -12 8 = - 3 2

L={ - 3 2 }

- 3 2 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +36 -12x = 0

Lösung einblenden

x 2 -12x +36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 36 21

x1,2 = +12 ± 144 -144 2

x1,2 = +12 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 2 = 6

L={ 6 }

6 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 27 2 x +35 = 0

Lösung einblenden
x 2 - 27 2 x +35 = 0 |⋅ 2
2( x 2 - 27 2 x +35 ) = 0

2 x 2 -27x +70 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +27 ± ( -27 ) 2 -4 · 2 · 70 22

x1,2 = +27 ± 729 -560 4

x1,2 = +27 ± 169 4

x1 = 27 + 169 4 = 27 +13 4 = 40 4 = 10

x2 = 27 - 169 4 = 27 -13 4 = 14 4 = 3,5

L={ 3,5 ; 10 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

- x 2 +8x +3 = ( -2x -7 ) ( x +5 ) +18x +26

Lösung einblenden
- x 2 +8x +3 = ( -2x -7 ) ( x +5 ) +18x +26
- x 2 +8x +3 = -2 x 2 -17x -35 +18x +26
- x 2 +8x +3 = -2 x 2 + x -9 | +2 x 2 - x +9

x 2 +7x +12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -7 ± 7 2 -4 · 1 · 12 21

x1,2 = -7 ± 49 -48 2

x1,2 = -7 ± 1 2

x1 = -7 + 1 2 = -7 +1 2 = -6 2 = -3

x2 = -7 - 1 2 = -7 -1 2 = -8 2 = -4

L={ -4 ; -3 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 2 x 2 -50 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

2 x 2 -50 = 0 | +50
2 x 2 = 50 |:2
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

L={ -5 ; 5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -5 |0) und N2( 5 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 +2x -6
und
g(x)= 5 x 2 +5x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 +2x -6 = 5 x 2 +5x +4 | -5 x 2 -5x -4

x 2 -3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

L={ -2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 5 ( -2 ) 2 +5( -2 ) +4 = 54 -10 +4 = 20 -10 +4 = 14

g( 5 ) = 5 5 2 +55 +4 = 525 +25 +4 = 125 +25 +4 = 154

Die Schnittpunkte sind also S1( -2 | 14 ) und S2( 5 | 154 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 2x -5 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 1 und x2 = 3.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x -1 ) · ( x -3 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x -1 ) · ( x -3 ) = x 2 -4x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -4x +3 = 2x -5 | -2x +5

x 2 -6x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 8 21

x1,2 = +6 ± 36 -32 2

x1,2 = +6 ± 4 2

x1 = 6 + 4 2 = 6 +2 2 = 8 2 = 4

x2 = 6 - 4 2 = 6 -2 2 = 4 2 = 2

L={ 2 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = 22 -5 = 4 -5 = -1

g( 4 ) = 24 -5 = 8 -5 = 3

Die Schnittpunkte sind also S1( 2 | -1 ) und S2( 4 | 3 ).