Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -3x -54 = 0

Lösung einblenden

2 x 2 -3x -54 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 2 · ( -54 ) 22

x1,2 = +3 ± 9 +432 4

x1,2 = +3 ± 441 4

x1 = 3 + 441 4 = 3 +21 4 = 24 4 = 6

x2 = 3 - 441 4 = 3 -21 4 = -18 4 = -4,5

L={ -4,5 ; 6 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 -12x +36 = 0

Lösung einblenden

x 2 -12x +36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 36 21

x1,2 = +12 ± 144 -144 2

x1,2 = +12 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 2 = 6

L={ 6 }

6 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +10x +25 = 0

Lösung einblenden

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

10 x 2 -2x +8 = ( 9x +5 ) ( x +8 ) -84x -36

Lösung einblenden
10 x 2 -2x +8 = ( 9x +5 ) ( x +8 ) -84x -36
10 x 2 -2x +8 = 9 x 2 +77x +40 -84x -36
10 x 2 -2x +8 = 9 x 2 -7x +4 | -9 x 2 +7x -4

x 2 +5x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · 1 · 4 21

x1,2 = -5 ± 25 -16 2

x1,2 = -5 ± 9 2

x1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

x2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

L={ -4 ; -1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 43 5 x - 18 5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 43 5 x - 18 5 = 0 |⋅ 5
5( x 2 - 43 5 x - 18 5 ) = 0

5 x 2 -43x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +43 ± ( -43 ) 2 -4 · 5 · ( -18 ) 25

x1,2 = +43 ± 1849 +360 10

x1,2 = +43 ± 2209 10

x1 = 43 + 2209 10 = 43 +47 10 = 90 10 = 9

x2 = 43 - 2209 10 = 43 -47 10 = -4 10 = -0,4

L={ -0,4 ; 9 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -0,4 |0) und N2( 9 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 2 x 2 - x +7
und
g(x)= x 2 -5x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2 x 2 - x +7 = x 2 -5x +3 | - x 2 +5x -3

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = ( -2 ) 2 -5( -2 ) +3 = 4 +10 +3 = 17

Der einzige Schnittpunkt ist also S( -2 | 17 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 -3x -10 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 4.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -4 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +0 ) · ( x -4 ) = - x 2 +4x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +4x = -2 x 2 -3x -10 | +2 x 2 +3x +10

x 2 +7x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -7 ± 7 2 -4 · 1 · 10 21

x1,2 = -7 ± 49 -40 2

x1,2 = -7 ± 9 2

x1 = -7 + 9 2 = -7 +3 2 = -4 2 = -2

x2 = -7 - 9 2 = -7 -3 2 = -10 2 = -5

L={ -5 ; -2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = -2 ( -5 ) 2 -3( -5 ) -10 = -225 +15 -10 = -50 +15 -10 = -45

g( -2 ) = -2 ( -2 ) 2 -3( -2 ) -10 = -24 +6 -10 = -8 +6 -10 = -12

Die Schnittpunkte sind also S1( -5 | -45 ) und S2( -2 | -12 ).