Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +20x +101 = 0

Lösung einblenden

x 2 +20x +101 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -20 ± 20 2 -4 · 1 · 101 21

x1,2 = -20 ± 400 -404 2

x1,2 = -20 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-21 -11x +2 x 2 = 0

Lösung einblenden

2 x 2 -11x -21 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +11 ± ( -11 ) 2 -4 · 2 · ( -21 ) 22

x1,2 = +11 ± 121 +168 4

x1,2 = +11 ± 289 4

x1 = 11 + 289 4 = 11 +17 4 = 28 4 = 7

x2 = 11 - 289 4 = 11 -17 4 = -6 4 = -1,5

L={ -1,5 ; 7 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -18x -30 = 0

Lösung einblenden
-3 x 2 -18x -30 = 0 |:3

- x 2 -6x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · ( -1 ) · ( -10 ) 2( -1 )

x1,2 = +6 ± 36 -40 -2

x1,2 = +6 ± ( -4 ) -2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

7 x 2 -5x -6 = ( 6x +6 ) ( x +8 ) -59x -53

Lösung einblenden
7 x 2 -5x -6 = ( 6x +6 ) ( x +8 ) -59x -53
7 x 2 -5x -6 = 6 x 2 +54x +48 -59x -53
7 x 2 -5x -6 = 6 x 2 -5x -5 | +6
7 x 2 -5x = 6 x 2 -5x +1 | -6 x 2 +5x
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -2x +2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -2x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 2 21

x1,2 = +2 ± 4 -8 2

x1,2 = +2 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Es gibt also keine Schnittpunkte mit der x-Achse (Nullstellen).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 -11x +30
und
g(x)= 2 x 2 - x +5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 -11x +30 = 2 x 2 - x +5 | -2 x 2 + x -5

x 2 -10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 25 21

x1,2 = +10 ± 100 -100 2

x1,2 = +10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 10 2 = 5

L={ 5 }

5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 5 ) = 2 5 2 - 5 +5 = 225 -5 +5 = 50 -5 +5 = 50

Der einzige Schnittpunkt ist also S( 5 | 50 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +10x -8 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 1 und x2 = 3.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x -1 ) · ( x -3 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x -1 ) · ( x -3 ) = - x 2 +4x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +4x -3 = -2 x 2 +10x -8 | +2 x 2 -10x +8

x 2 -6x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

L={ 1 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = -2 1 2 +101 -8 = -21 +10 -8 = -2 +10 -8 = 0

g( 5 ) = -2 5 2 +105 -8 = -225 +50 -8 = -50 +50 -8 = -8

Die Schnittpunkte sind also S1( 1 |0) und S2( 5 | -8 ).