Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

16 x 2 +24x +10 = 0

Lösung einblenden
16 x 2 +24x +10 = 0 |:2

8 x 2 +12x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -12 ± 12 2 -4 · 8 · 5 28

x1,2 = -12 ± 144 -160 16

x1,2 = -12 ± ( -16 ) 16

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-11x + x 2 = -30

Lösung einblenden
x 2 -11x = -30 | +30

x 2 -11x +30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +11 ± ( -11 ) 2 -4 · 1 · 30 21

x1,2 = +11 ± 121 -120 2

x1,2 = +11 ± 1 2

x1 = 11 + 1 2 = 11 +1 2 = 12 2 = 6

x2 = 11 - 1 2 = 11 -1 2 = 10 2 = 5

L={ 5 ; 6 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 13 2 x -12 = 0

Lösung einblenden
x 2 - 13 2 x -12 = 0 |⋅ 2
2( x 2 - 13 2 x -12 ) = 0

2 x 2 -13x -24 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +13 ± ( -13 ) 2 -4 · 2 · ( -24 ) 22

x1,2 = +13 ± 169 +192 4

x1,2 = +13 ± 361 4

x1 = 13 + 361 4 = 13 +19 4 = 32 4 = 8

x2 = 13 - 361 4 = 13 -19 4 = -6 4 = -1,5

L={ -1,5 ; 8 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-4 x 2 -6x +3 = ( -5x +2 ) ( x +4 ) +9x -1

Lösung einblenden
-4 x 2 -6x +3 = ( -5x +2 ) ( x +4 ) +9x -1
-4 x 2 -6x +3 = -5 x 2 -18x +8 +9x -1
-4 x 2 -6x +3 = -5 x 2 -9x +7 | +5 x 2 +9x -7

x 2 +3x -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

x1,2 = -3 ± 9 +16 2

x1,2 = -3 ± 25 2

x1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

x2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

L={ -4 ; 1 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - x -30 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - x -30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -30 ) 21

x1,2 = +1 ± 1 +120 2

x1,2 = +1 ± 121 2

x1 = 1 + 121 2 = 1 +11 2 = 12 2 = 6

x2 = 1 - 121 2 = 1 -11 2 = -10 2 = -5

L={ -5 ; 6 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -5 |0) und N2( 6 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 +5x +26
und
g(x)= 4 x 2 -5x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 +5x +26 = 4 x 2 -5x +1 | -4 x 2 +5x -1

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = 4 ( -5 ) 2 -5( -5 ) +1 = 425 +25 +1 = 100 +25 +1 = 126

Der einzige Schnittpunkt ist also S( -5 | 126 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 7x -20 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +0 ) · ( x -2 ) = x 2 -2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -2x = 7x -20 | -7x +20

x 2 -9x +20 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

L={ 4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = 74 -20 = 28 -20 = 8

g( 5 ) = 75 -20 = 35 -20 = 15

Die Schnittpunkte sind also S1( 4 | 8 ) und S2( 5 | 15 ).