Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 - x -18 = 0

Lösung einblenden

5 x 2 - x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 5 · ( -18 ) 25

x1,2 = +1 ± 1 +360 10

x1,2 = +1 ± 361 10

x1 = 1 + 361 10 = 1 +19 10 = 20 10 = 2

x2 = 1 - 361 10 = 1 -19 10 = -18 10 = -1,8

L={ -1,8 ; 2 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +10x = -9

Lösung einblenden
x 2 +10x = -9 | +9

x 2 +10x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 9 21

x1,2 = -10 ± 100 -36 2

x1,2 = -10 ± 64 2

x1 = -10 + 64 2 = -10 +8 2 = -2 2 = -1

x2 = -10 - 64 2 = -10 -8 2 = -18 2 = -9

L={ -9 ; -1 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

- x 2 +2x -2 = 0

Lösung einblenden

- x 2 +2x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · ( -1 ) · ( -2 ) 2( -1 )

x1,2 = -2 ± 4 -8 -2

x1,2 = -2 ± ( -4 ) -2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

8 x 2 +3x -8 = ( 7x +9 ) ( x -8 ) +53x +74

Lösung einblenden
8 x 2 +3x -8 = ( 7x +9 ) ( x -8 ) +53x +74
8 x 2 +3x -8 = 7 x 2 -47x -72 +53x +74
8 x 2 +3x -8 = 7 x 2 +6x +2 | -7 x 2 -6x -2

x 2 -3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

L={ -2 ; 5 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +2x -35 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +2x -35 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -35 ) 21

x1,2 = -2 ± 4 +140 2

x1,2 = -2 ± 144 2

x1 = -2 + 144 2 = -2 +12 2 = 10 2 = 5

x2 = -2 - 144 2 = -2 -12 2 = -14 2 = -7

L={ -7 ; 5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -7 |0) und N2( 5 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 -4x +9
und
g(x)= 4 x 2 + x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 -4x +9 = 4 x 2 + x +3 | -4 x 2 - x -3

x 2 -5x +6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 6 21

x1,2 = +5 ± 25 -24 2

x1,2 = +5 ± 1 2

x1 = 5 + 1 2 = 5 +1 2 = 6 2 = 3

x2 = 5 - 1 2 = 5 -1 2 = 4 2 = 2

L={ 2 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = 4 2 2 +2 +3 = 44 +2 +3 = 16 +2 +3 = 21

g( 3 ) = 4 3 2 +3 +3 = 49 +3 +3 = 36 +3 +3 = 42

Die Schnittpunkte sind also S1( 2 | 21 ) und S2( 3 | 42 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -3x +9 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 1.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -1 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +1 ) · ( x -1 ) = x 2 -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 -1 = -3x +9 | +3x -9

x 2 +3x -10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

L={ -5 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = -3( -5 ) +9 = 15 +9 = 24

g( 2 ) = -32 +9 = -6 +9 = 3

Die Schnittpunkte sind also S1( -5 | 24 ) und S2( 2 | 3 ).