Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +16x +16 = 0

Lösung einblenden
4 x 2 +16x +16 = 0 |:4

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +82 = -18x

Lösung einblenden
x 2 +82 = -18x | +18x

x 2 +18x +82 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -18 ± 18 2 -4 · 1 · 82 21

x1,2 = -18 ± 324 -328 2

x1,2 = -18 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 - 9 2 x -9 = 0

Lösung einblenden
x 2 - 9 2 x -9 = 0 |⋅ 2
2( x 2 - 9 2 x -9 ) = 0

2 x 2 -9x -18 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +9 ± ( -9 ) 2 -4 · 2 · ( -18 ) 22

x1,2 = +9 ± 81 +144 4

x1,2 = +9 ± 225 4

x1 = 9 + 225 4 = 9 +15 4 = 24 4 = 6

x2 = 9 - 225 4 = 9 -15 4 = -6 4 = -1,5

L={ -1,5 ; 6 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

- x 2 +5x -6 = ( -2x -1 ) ( x +3 ) +12x +13

Lösung einblenden
- x 2 +5x -6 = ( -2x -1 ) ( x +3 ) +12x +13
- x 2 +5x -6 = -2 x 2 -7x -3 +12x +13
- x 2 +5x -6 = -2 x 2 +5x +10 | +6
- x 2 +5x = -2 x 2 +5x +16 | +2 x 2 -5x
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

L={ -4 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= -2 x 2 -6x +8 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

-2 x 2 -6x +8 = 0 |:2

- x 2 -3x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · ( -1 ) · 4 2( -1 )

x1,2 = +3 ± 9 +16 -2

x1,2 = +3 ± 25 -2

x1 = 3 + 25 -2 = 3 +5 -2 = 8 -2 = -4

x2 = 3 - 25 -2 = 3 -5 -2 = -2 -2 = 1

L={ -4 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -4 |0) und N2( 1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= - x 2 - x +7
und
g(x)= -2 x 2 -5x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 - x +7 = -2 x 2 -5x +3 | +2 x 2 +5x -3

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -2 ( -2 ) 2 -5( -2 ) +3 = -24 +10 +3 = -8 +10 +3 = 5

Der einzige Schnittpunkt ist also S( -2 | 5 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 -8x -25 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 0 und x2 = 2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +0 ) · ( x -2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +0 ) · ( x -2 ) = - x 2 +2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +2x = -2 x 2 -8x -25 | +2 x 2 +8x +25

x 2 +10x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = -2 ( -5 ) 2 -8( -5 ) -25 = -225 +40 -25 = -50 +40 -25 = -35

Der einzige Schnittpunkt ist also S( -5 | -35 ).