Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 +27x +10 = 0

Lösung einblenden

5 x 2 +27x +10 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -27 ± 27 2 -4 · 5 · 10 25

x1,2 = -27 ± 729 -200 10

x1,2 = -27 ± 529 10

x1 = -27 + 529 10 = -27 +23 10 = -4 10 = -0,4

x2 = -27 - 529 10 = -27 -23 10 = -50 10 = -5

L={ -5 ; -0,4 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +2x = -1

Lösung einblenden
x 2 +2x = -1 | +1

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +5x -50 = 0

Lösung einblenden

x 2 +5x -50 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · 1 · ( -50 ) 21

x1,2 = -5 ± 25 +200 2

x1,2 = -5 ± 225 2

x1 = -5 + 225 2 = -5 +15 2 = 10 2 = 5

x2 = -5 - 225 2 = -5 -15 2 = -20 2 = -10

L={ -10 ; 5 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

- x 2 +8x -9 = ( -2x +6 ) ( x +2 ) +7x -19

Lösung einblenden
- x 2 +8x -9 = ( -2x +6 ) ( x +2 ) +7x -19
- x 2 +8x -9 = -2 x 2 +2x +12 +7x -19
- x 2 +8x -9 = -2 x 2 +9x -7 | +2 x 2 -9x +7

x 2 - x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

L={ -1 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +8x +7 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +8x +7 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · 7 21

x1,2 = -8 ± 64 -28 2

x1,2 = -8 ± 36 2

x1 = -8 + 36 2 = -8 +6 2 = -2 2 = -1

x2 = -8 - 36 2 = -8 -6 2 = -14 2 = -7

L={ -7 ; -1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -7 |0) und N2( -1 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 x 2 +6x +6
und
g(x)= 2 x 2 +2x +3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 x 2 +6x +6 = 2 x 2 +2x +3 | -2 x 2 -2x -3

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

L={ -3 ; -1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = 2 ( -3 ) 2 +2( -3 ) +3 = 29 -6 +3 = 18 -6 +3 = 15

g( -1 ) = 2 ( -1 ) 2 +2( -1 ) +3 = 21 -2 +3 = 2 -2 +3 = 3

Die Schnittpunkte sind also S1( -3 | 15 ) und S2( -1 | 3 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +5x -3 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = 1 und x2 = 5.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x -1 ) · ( x -5 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x -1 ) · ( x -5 ) = - x 2 +6x -5 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +6x -5 = -2 x 2 +5x -3 | +2 x 2 -5x +3

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -2 ( -2 ) 2 +5( -2 ) -3 = -24 -10 -3 = -8 -10 -3 = -21

g( 1 ) = -2 1 2 +51 -3 = -21 +5 -3 = -2 +5 -3 = 0

Die Schnittpunkte sind also S1( -2 | -21 ) und S2( 1 |0).