Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 +53x +30 = 0

Lösung einblenden

5 x 2 +53x +30 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -53 ± 53 2 -4 · 5 · 30 25

x1,2 = -53 ± 2809 -600 10

x1,2 = -53 ± 2209 10

x1 = -53 + 2209 10 = -53 +47 10 = -6 10 = -0,6

x2 = -53 - 2209 10 = -53 -47 10 = -100 10 = -10

L={ -10 ; -0,6 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

42 -13x = - x 2

Lösung einblenden
-13x +42 = - x 2 | + x 2

x 2 -13x +42 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +13 ± ( -13 ) 2 -4 · 1 · 42 21

x1,2 = +13 ± 169 -168 2

x1,2 = +13 ± 1 2

x1 = 13 + 1 2 = 13 +1 2 = 14 2 = 7

x2 = 13 - 1 2 = 13 -1 2 = 12 2 = 6

L={ 6 ; 7 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -2x +1 = 0

Lösung einblenden

x 2 -2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

x1,2 = +2 ± 4 -4 2

x1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 2 = 1

L={ 1 }

1 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

8 x 2 +5x +8 = ( 7x -7 ) ( x -7 ) +62x -29

Lösung einblenden
8 x 2 +5x +8 = ( 7x -7 ) ( x -7 ) +62x -29
8 x 2 +5x +8 = 7 x 2 -56x +49 +62x -29
8 x 2 +5x +8 = 7 x 2 +6x +20 | -7 x 2 -6x -20

x 2 - x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

L={ -3 ; 4 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 3 x 2 +12x +12 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

3 x 2 +12x +12 = 0 |:3

x 2 +4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 4 x 2 -2x -2
und
g(x)= 3 x 2 -4x +1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

4 x 2 -2x -2 = 3 x 2 -4x +1 | -3 x 2 +4x -1

x 2 +2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

L={ -3 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = 3 ( -3 ) 2 -4( -3 ) +1 = 39 +12 +1 = 27 +12 +1 = 40

g( 1 ) = 3 1 2 -41 +1 = 31 -4 +1 = 3 -4 +1 = 0

Die Schnittpunkte sind also S1( -3 | 40 ) und S2( 1 |0).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 -2x +4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -1 und x2 = 1.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +1 ) · ( x -1 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +1 ) · ( x -1 ) = - x 2 +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 +1 = -2 x 2 -2x +4 | +2 x 2 +2x -4

x 2 +2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

L={ -3 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -2 ( -3 ) 2 -2( -3 ) +4 = -29 +6 +4 = -18 +6 +4 = -8

g( 1 ) = -2 1 2 -21 +4 = -21 -2 +4 = -2 -2 +4 = 0

Die Schnittpunkte sind also S1( -3 | -8 ) und S2( 1 |0).