Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +12x +10 = 0

Lösung einblenden
4 x 2 +12x +10 = 0 |:2

2 x 2 +6x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 2 · 5 22

x1,2 = -6 ± 36 -40 4

x1,2 = -6 ± ( -4 ) 4

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

1 +2x = - x 2

Lösung einblenden
2x +1 = - x 2 | + x 2

x 2 +2x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -3x + 9 4 = 0

Lösung einblenden
x 2 -3x + 9 4 = 0 |⋅ 4
4( x 2 -3x + 9 4 ) = 0

4 x 2 -12x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +12 ± ( -12 ) 2 -4 · 4 · 9 24

x1,2 = +12 ± 144 -144 8

x1,2 = +12 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 8 = 3 2

L={ 3 2 }

3 2 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-6 x 2 +8x +5 = ( -7x +8 ) ( x -6 ) -44x +53

Lösung einblenden
-6 x 2 +8x +5 = ( -7x +8 ) ( x -6 ) -44x +53
-6 x 2 +8x +5 = -7 x 2 +50x -48 -44x +53
-6 x 2 +8x +5 = -7 x 2 +6x +5 | -5
-6 x 2 +8x = -7 x 2 +6x | - ( -7 x 2 +6x )
-6 x 2 +7 x 2 +8x -6x = 0
x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 5 2 x - 25 2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 5 2 x - 25 2 = 0 |⋅ 2
2( x 2 + 5 2 x - 25 2 ) = 0

2 x 2 +5x -25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -5 ± 5 2 -4 · 2 · ( -25 ) 22

x1,2 = -5 ± 25 +200 4

x1,2 = -5 ± 225 4

x1 = -5 + 225 4 = -5 +15 4 = 10 4 = 2,5

x2 = -5 - 225 4 = -5 -15 4 = -20 4 = -5

L={ -5 ; 2,5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -5 |0) und N2( 2,5 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -16
und
g(x)= -5 x 2 + x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -16 = -5 x 2 + x -4 | +5 x 2 - x +4

x 2 - x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

L={ -3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -5 ( -3 ) 2 -3 -4 = -59 -3 -4 = -45 -3 -4 = -52

g( 4 ) = -5 4 2 +4 -4 = -516 +4 -4 = -80 +4 -4 = -80

Die Schnittpunkte sind also S1( -3 | -52 ) und S2( 4 | -80 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= -2 x 2 +4x -5 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -2 und x2 = 0.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +2 ) · ( x +0 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach unten geöffnet ist, gilt also
f(x)= - ( x +2 ) · ( x +0 ) = - x 2 -2x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 -2x = -2 x 2 +4x -5 | +2 x 2 -4x +5

x 2 -6x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

L={ 1 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = -2 1 2 +41 -5 = -21 +4 -5 = -2 +4 -5 = -3

g( 5 ) = -2 5 2 +45 -5 = -225 +20 -5 = -50 +20 -5 = -35

Die Schnittpunkte sind also S1( 1 | -3 ) und S2( 5 | -35 ).