Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

5 x 2 -36x +36 = 0

Lösung einblenden

5 x 2 -36x +36 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +36 ± ( -36 ) 2 -4 · 5 · 36 25

x1,2 = +36 ± 1296 -720 10

x1,2 = +36 ± 576 10

x1 = 36 + 576 10 = 36 +24 10 = 60 10 = 6

x2 = 36 - 576 10 = 36 -24 10 = 12 10 = 1,2

L={ 1,2 ; 6 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-3x -2 = -2 x 2

Lösung einblenden
-3x -2 = -2 x 2 | +2 x 2

2 x 2 -3x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +3 ± ( -3 ) 2 -4 · 2 · ( -2 ) 22

x1,2 = +3 ± 9 +16 4

x1,2 = +3 ± 25 4

x1 = 3 + 25 4 = 3 +5 4 = 8 4 = 2

x2 = 3 - 25 4 = 3 -5 4 = -2 4 = -0,5

L={ -0,5 ; 2 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 +8x +16 = 0

Lösung einblenden

x 2 +8x +16 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

L={ -4 }

-4 ist 2-fache Lösung!

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

6 x 2 - x -7 = ( 5x +5 ) ( x -1 ) -2x +4

Lösung einblenden
6 x 2 - x -7 = ( 5x +5 ) ( x -1 ) -2x +4
6 x 2 - x -7 = 5 x 2 -5 -2x +4
6 x 2 - x -7 = 5 x 2 -2x -1 | -5 x 2 +2x +1

x 2 + x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

L={ -3 ; 2 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -4x +4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -4x +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 4 21

x1,2 = +4 ± 16 -16 2

x1,2 = +4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 2 = 2

L={ 2 }

2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -8x +3
und
g(x)= -5 x 2 -4x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -8x +3 = -5 x 2 -4x -2 | +5 x 2 +4x +2

x 2 -4x +5 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 5 21

x1,2 = +4 ± 16 -20 2

x1,2 = +4 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

L={}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

Es gibt also keine Schnittpunkte.

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= x -1 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -3 und x2 = 1.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +3 ) · ( x -1 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +3 ) · ( x -1 ) = x 2 +2x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 +2x -3 = x -1 | - x +1

x 2 + x -2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = -2 -1 = -3

g( 1 ) = 1 -1 = 0

Die Schnittpunkte sind also S1( -2 | -3 ) und S2( 1 |0).