Aufgabenbeispiele von Mitternachtsformel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +6x +4 = 0

Lösung einblenden
2 x 2 +6x +4 = 0 |:2

x 2 +3x +2 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -3 ± 3 2 -4 · 1 · 2 21

x1,2 = -3 ± 9 -8 2

x1,2 = -3 ± 1 2

x1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

x2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

L={ -2 ; -1 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +25 -20x = 0

Lösung einblenden

4 x 2 -20x +25 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +20 ± ( -20 ) 2 -4 · 4 · 25 24

x1,2 = +20 ± 400 -400 8

x1,2 = +20 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 20 8 = 5 2

L={ 5 2 }

5 2 ist 2-fache Lösung!

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -6x +8 = 0

Lösung einblenden

x 2 -6x +8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 8 21

x1,2 = +6 ± 36 -32 2

x1,2 = +6 ± 4 2

x1 = 6 + 4 2 = 6 +2 2 = 8 2 = 4

x2 = 6 - 4 2 = 6 -2 2 = 4 2 = 2

L={ 2 ; 4 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-5 x 2 +4x +7 = ( -6x -4 ) ( x -6 ) -30x -2

Lösung einblenden
-5 x 2 +4x +7 = ( -6x -4 ) ( x -6 ) -30x -2
-5 x 2 +4x +7 = -6 x 2 +32x +24 -30x -2
-5 x 2 +4x +7 = -6 x 2 +2x +22 | +6 x 2 -2x -22

x 2 +2x -15 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

L={ -5 ; 3 }

Nullstellen mit MNF

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - x + 1 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - x + 1 4 = 0 |⋅ 4
4( x 2 - x + 1 4 ) = 0

4 x 2 -4x +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 4 · 1 24

x1,2 = +4 ± 16 -16 8

x1,2 = +4 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 8 = 1 2

L={ 1 2 }

1 2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 1 2 |0).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2x -8
und
g(x)= - x 2 -4x -5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2x -8 = - x 2 -4x -5 | + x 2 +4x +5

x 2 +2x -3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

L={ -3 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = - ( -3 ) 2 -4( -3 ) -5 = -9 +12 -5 = -2

g( 1 ) = - 1 2 -41 -5 = -1 -4 -5 = -10

Die Schnittpunkte sind also S1( -3 | -2 ) und S2( 1 | -10 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Normalparabel der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= 6x +17 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort die Nullstellen der Normalparabel bei x1 = -4 und x2 = -2.

Der faktorisierte Funktionsterm von f ist also f(x)= a · ( x +4 ) · ( x +2 ) .

Da es sich aber um eine Normalparabel handelt, muss das a=1 oder a=-1 sein. Da die Parabel nach oben geöffnet ist, gilt also
f(x)= ( x +4 ) · ( x +2 ) = x 2 +6x +8 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x 2 +6x +8 = 6x +17 | -8
x 2 +6x = 6x +9 | -6x
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = 6( -3 ) +17 = -18 +17 = -1

g( 3 ) = 63 +17 = 18 +17 = 35

Die Schnittpunkte sind also S1( -3 | -1 ) und S2( 3 | 35 ).