Aufgabenbeispiele von Tests
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Hypothesen-Test linksseitig
Beispiel:
Der Prager Gaststättenverband behauptet stolz, dass 80% ihrer Gaststätten das strenge Alkoholverbot für Jugendliche (kein Bier unter 18!) konsequent umsetzen. Das tschechische blaue Kreuz bezweifelt das und glaubt dass es weit weniger konsequent umgesetzt wird. Eine zufällig sich in Prag aufhaltende oberschwäbische Schülergruppe erklärt sich bereit, eine Hypothesen-Test mit einem Signifikanzniveau von alpha=1% durchzuführen. Dabei versuchen 17-jährige SchülerInnen in 68 Kneipen ein Bier zu bestellen. Gib den Bereich an, wie viele Gaststätten dabei eine "ID" (Personalausweis) der Jugendlichen verlangen müssten, damit das blaue Kreuz die Behauptung des Gaststättenverbands verwerfen könnte.
k | P(X≤k) |
---|---|
... | ... |
40 | 0.0001 |
41 | 0.0002 |
42 | 0.0004 |
43 | 0.001 |
44 | 0.0024 |
45 | 0.0053 |
46 | 0.0112 |
47 | 0.0221 |
48 | 0.0413 |
49 | 0.0727 |
... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.8 zu verwerfen. Der Test soll bestätigen, dass p<0.8 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(68,0.8,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 45 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.8 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.8 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0053 =0.53% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;45]
Annahmebereich von H0: [46;68]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;45], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [46;68], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test rechtseitig
Beispiel:
Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p> 0,25 ist. Dazu soll die Nullhypothese H0: p=0,25 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=89 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um das gewünschte Ergebnis zu erhalten? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?
k | P(X≤k) |
---|---|
... | ... |
24 | 0.7139 |
25 | 0.789 |
26 | 0.8507 |
27 | 0.8987 |
28 | 0.9341 |
29 | 0.9589 |
30 | 0.9755 |
31 | 0.986 |
32 | 0.9923 |
33 | 0.996 |
... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.25 zu verwerfen. Der Test soll bestätigen, dass p>0.25 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(89,0.25,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 29 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.
Annahmebereich von H0: [0;29]
Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 30 Treffern beginnt.
Ablehnungsbereich von H0: [30;89]
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.25 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.25 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0411 =4.11% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [30;89], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;29], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test linksseitig
Beispiel:
Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikaments unter p=0,85 gesunken ist. Um dies nachzuweisen, soll ein 69-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? Wie hoch ist die Irrtumswahrscheinlichkeit?
k | P(X≤k) |
---|---|
... | ... |
48 | 0.0009 |
49 | 0.0022 |
50 | 0.0052 |
51 | 0.0116 |
52 | 0.0242 |
53 | 0.047 |
54 | 0.0854 |
55 | 0.1446 |
56 | 0.2285 |
57 | 0.3369 |
... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.85 zu verwerfen. Der Test soll bestätigen, dass p<0.85 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(69,0.85,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 53 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.85 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.85 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.047 =4.7% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;53]
Annahmebereich von H0: [54;69]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;53], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [54;69], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Fehler 2. Art
Beispiel:
Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 76 Würfen und einem Signifikanzniveau von 5%.
a) In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann.
b) In Wirklichkeit ist der Würfel tatsächlich manipuliert und würfelt nur mit der Wahrscheinlichkeit von 10% eine sechs. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Sechsen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?
k | P(X≤k) |
---|---|
... | ... |
2 | 0.0001 |
3 | 0.0007 |
4 | 0.0026 |
5 | 0.0083 |
6 | 0.0217 |
7 | 0.0486 |
8 | 0.0949 |
9 | 0.165 |
10 | 0.2588 |
11 | 0.3714 |
... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ zu verwerfen. Der Test soll bestätigen, dass p< ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(76,,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 7 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0486 =4.86% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;7]
Annahmebereich von H0: [8;76]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;7], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [8;76], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
In dieser Aufgabe ist ja aber H0:p= falsch, weil ja in Wirklichkeit p=0.1 ist.
Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 8 bis 76, so dass H0 (irrtümlicherweise) nicht verworfen wurde.
Diese Wahrscheinlichkeit (mit dem richtigen p=0.1) beträgt nun: =1- ≈ 1-0.5055 ≈ 0.4945
Mit 49.45% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.