Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,11 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 53 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 5% festgelegt. In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt? Wie hoch bleibt die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0021
10.0157
20.0594
30.1513
40.2933
50.4653
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.11 zu verwerfen. Der Test soll bestätigen, dass p<0.11 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(53,0.11,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 1 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.11 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.11 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0157 =1.57% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;1]

Annahmebereich von H0: [2;53]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;1], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [2;53], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Einem partystarken 12-Klässler wird von einem nicht ganz vorurteilsfreien Lehrer vorgeworfen, nichts auf die Klassenarbeit gelernt haben. Diese findet in Form eines Multiple Choice-Tests mit 71 Aufgaben statt, bei der genau eine der vier Antwortmöglichkeiten richtig ist. In welchem Bereich muss nun die Anzahl der richtigen Antworten liegen, damit er auf einem Signifikanzniveau von 0,1% die Behauptung des Lehrers widerlegen kann.

Lösung einblenden
kP(X≤k)
......
250.9803
260.9897
270.9948
280.9976
290.9989
300.9995
310.9998
320.9999
331
341
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.25 zu verwerfen. Der Test soll bestätigen, dass p>0.25 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.001= 0.999 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(71,0.25,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 30 erstmals mindestens 99.9% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;30]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 31 Treffern beginnt.

Ablehnungsbereich von H0: [31;71]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.25 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.25 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0005 =0.05% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [31;71], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;30], so muss die Nullhypothese beibehalten werden.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,07 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 66 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 5% festgelegt. In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt? Wie hoch bleibt die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0083
10.0496
20.1507
30.3129
40.5053
50.6848
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.07 zu verwerfen. Der Test soll bestätigen, dass p<0.07 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(66,0.07,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 1 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.07 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.07 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0496 =4.96% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;1]

Annahmebereich von H0: [2;66]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;1], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [2;66], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,17 gesunken ist. Um dies nachzuweisen, soll ein 76-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden.
a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen?
b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,05. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
......
20.0001
30.0005
40.0021
50.0068
60.0183
70.0417
80.083
90.147
100.2348
110.3426
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.17 zu verwerfen. Der Test soll bestätigen, dass p<0.17 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(76,0.17,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 7 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.17 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.17 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0417 =4.17% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;7]

Annahmebereich von H0: [8;76]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;7], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [8;76], so muss die Nullhypothese beibehalten werden.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.17 falsch, weil ja in Wirklichkeit p=0.05 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 8 bis 76, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.05) beträgt nun: P0.0576 (X8) =1- P0.0576 (X7) ≈ 1-0.964 ≈ 0.036

Mit 3.6% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.