Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikaments unter p=0,55 gesunken ist. Um dies nachzuweisen, soll ein 89-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 1% durchgeführt werden. In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? Wie hoch ist die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
320.0002
330.0005
340.0011
350.0021
360.0041
370.0075
380.0132
390.0223
400.0362
410.0566
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.55 zu verwerfen. Der Test soll bestätigen, dass p<0.55 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(89,0.55,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 37 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.55 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.55 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0075 =0.75% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;37]

Annahmebereich von H0: [38;89]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;37], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [38;89], so muss die Nullhypothese beibehalten werden.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p> 0,3 ist. Dazu soll die Nullhypothese H0: p=0,3 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=42 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um das gewünschte Ergebnis zu erhalten? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
130.6267
140.743
150.836
160.9033
170.9474
180.9736
190.9879
200.9949
210.998
220.9993
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.3 zu verwerfen. Der Test soll bestätigen, dass p>0.3 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(42,0.3,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 18 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;18]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 19 Treffern beginnt.

Ablehnungsbereich von H0: [19;42]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.3 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.3 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0264 =2.64% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [19;42], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;18], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Mülleimer zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 86 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 5% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer zu triumphieren zu können?

Lösung einblenden
kP(X≤k)
......
80.5051
90.6429
100.7608
110.8513
120.9142
130.9539
140.977
150.9893
160.9953
170.9981
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(86,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 13 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;13]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 14 Treffern beginnt.

Ablehnungsbereich von H0: [14;86]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0461 =4.61% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [14;86], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;13], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 55 Würfen und einem Signifikanzniveau von 1%.
a) In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann.
b) In Wirklichkeit ist der Würfel tatsächlich manipuliert und würfelt nur mit der Wahrscheinlichkeit von 10% eine sechs. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Sechsen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00
10.0005
20.0032
30.0124
40.0365
50.0857
60.1676
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(55, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 2 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0032 =0.32% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;2]

Annahmebereich von H0: [3;55]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;2], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [3;55], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p= 1 6 falsch, weil ja in Wirklichkeit p=0.1 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 3 bis 55, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.1) beträgt nun: P0.155 (X3) =1- P0.155 (X2) ≈ 1-0.0774 ≈ 0.9226

Mit 92.26% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.