Aufgabenbeispiele von Tests
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Hypothesen-Test linksseitig
Beispiel:
Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikaments unter p=0,15 gesunken ist. Um dies nachzuweisen, soll ein 89-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? Wie hoch ist die Irrtumswahrscheinlichkeit?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 2 | 0.0001 |
| 3 | 0.0004 |
| 4 | 0.0016 |
| 5 | 0.0053 |
| 6 | 0.0145 |
| 7 | 0.0337 |
| 8 | 0.0684 |
| 9 | 0.1236 |
| 10 | 0.2015 |
| 11 | 0.3001 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.15 zu verwerfen. Der Test soll bestätigen, dass p<0.15 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(89,0.15,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 7 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.15 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.15 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0337 =3.37% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;7]
Annahmebereich von H0: [8;89]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;7], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [8;89], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test rechtseitig
Beispiel:
In einem Multiple Choice Test ist bei jeder der 100 Aufgaben genau eine von fünf Lösungsmöglichkeiten richtig. In welchem Intervall muss die Anzahl der richtigen Antworten von Kevin liegen, damit er seiner Mutter (mit einer max. Irrtumswahrscheinlichkeit von 1%) nachweisen kann, dass er auf den Test etwas gelernt und dadurch etwas gewusst hat und nicht jede Frage dem Zufall überließ? Gib die Irrtumswahrscheinlichkeit an!
| k | P(X≤k) |
|---|---|
| ... | ... |
| 25 | 0.9125 |
| 26 | 0.9442 |
| 27 | 0.9658 |
| 28 | 0.98 |
| 29 | 0.9888 |
| 30 | 0.9939 |
| 31 | 0.9969 |
| 32 | 0.9984 |
| 33 | 0.9993 |
| 34 | 0.9997 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.2 zu verwerfen. Der Test soll bestätigen, dass p>0.2 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.
Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.01= 0.99 Wahrscheinlichkeit auf sich vereinen muss.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(100,0.2,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 30 erstmals mindestens 99% der Gesamt-Wahrscheinlichkeit ausmachen.
Annahmebereich von H0: [0;30]
Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 31 Treffern beginnt.
Ablehnungsbereich von H0: [31;100]
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.2 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.2 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0061 =0.61% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [31;100], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;30], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Hypothesen-Test rechtseitig
Beispiel:
In einem Multiple Choice Test ist bei jeder der 88 Aufgaben genau eine von fünf Lösungsmöglichkeiten richtig. In welchem Intervall muss die Anzahl der richtigen Antworten von Kevin liegen, damit er seiner Mutter (mit einer max. Irrtumswahrscheinlichkeit von 1%) nachweisen kann, dass er auf den Test etwas gelernt und dadurch etwas gewusst hat und nicht jede Frage dem Zufall überließ? Gib die Irrtumswahrscheinlichkeit an!
| k | P(X≤k) |
|---|---|
| ... | ... |
| 22 | 0.9016 |
| 23 | 0.9382 |
| 24 | 0.963 |
| 25 | 0.9789 |
| 26 | 0.9885 |
| 27 | 0.994 |
| 28 | 0.9971 |
| 29 | 0.9986 |
| 30 | 0.9994 |
| 31 | 0.9997 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.2 zu verwerfen. Der Test soll bestätigen, dass p>0.2 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.
Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.01= 0.99 Wahrscheinlichkeit auf sich vereinen muss.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(88,0.2,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 27 erstmals mindestens 99% der Gesamt-Wahrscheinlichkeit ausmachen.
Annahmebereich von H0: [0;27]
Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 28 Treffern beginnt.
Ablehnungsbereich von H0: [28;88]
Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.2 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.2 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.006 =0.6% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [28;88], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;27], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Fehler 2. Art
Beispiel:
Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,31 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 93 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 5% festgelegt.
a) In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt?
b) In Wirklichkeit liegt die Ausfallwahrscheinlickeit der Leuchtmittel nur bei p=0,16. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der defekten Leuchtmittel nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 16 | 0.0019 |
| 17 | 0.0041 |
| 18 | 0.0083 |
| 19 | 0.0157 |
| 20 | 0.028 |
| 21 | 0.0472 |
| 22 | 0.0755 |
| 23 | 0.1146 |
| 24 | 0.166 |
| 25 | 0.2297 |
| ... | ... |
Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.31 zu verwerfen. Der Test soll bestätigen, dass p<0.31 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.
Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(93,0.31,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 21 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.31 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.31 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0472 =4.72% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)
Ablehnungsbereich von H0: [0;21]
Annahmebereich von H0: [22;93]
Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;21], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [22;93], so muss die Nullhypothese beibehalten werden.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
In dieser Aufgabe ist ja aber H0:p=0.31 falsch, weil ja in Wirklichkeit p=0.16 ist.
Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 22 bis 93, so dass H0 (irrtümlicherweise) nicht verworfen wurde.
Diese Wahrscheinlichkeit (mit dem richtigen p=0.16) beträgt nun: =1- ≈ 1-0.9647 ≈ 0.0353
Mit 3.53% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.
