Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p< 0,65 ist. Dazu soll die Nullhypothese H0: p=0,65 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=79 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 0,1% betragen.
In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um das gewünschte Ergebnis zu erhalten? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
320
330
340.0001
350.0001
360.0003
370.0007
380.0015
390.0031
400.006
410.0112
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.65 zu verwerfen. Der Test soll bestätigen, dass p<0.65 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(79,0.65,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 37 weniger als 0.1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.65 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.65 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0007 =0.07% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;37]

Annahmebereich von H0: [38;79]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;37], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [38;79], so muss die Nullhypothese beibehalten werden.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Mülleimer zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 81 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 5% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer zu triumphieren zu können?

Lösung einblenden
kP(X≤k)
......
80.578
90.7104
100.8163
110.8923
120.9415
130.9705
140.9862
150.994
160.9976
170.9991
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(81,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 13 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;13]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 14 Treffern beginnt.

Ablehnungsbereich von H0: [14;81]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0295 =2.95% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [14;81], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;13], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 99 Würfen und einem Signifikanzniveau von 5%. In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann. Wie hoch ist dann die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
50.0004
60.0015
70.0042
80.0106
90.0234
100.0465
110.084
120.1388
130.2122
140.3025
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(99, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 10 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0465 =4.65% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;10]

Annahmebereich von H0: [11;99]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;10], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [11;99], so muss die Nullhypothese beibehalten werden.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,33 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 96 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 5% festgelegt.
a) In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt?
b) In Wirklichkeit liegt die Ausfallwahrscheinlickeit der Leuchtmittel nur bei p=0,13. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der defekten Leuchtmittel nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
......
180.0014
190.003
200.0061
210.0116
220.0208
230.0353
240.0571
250.088
260.1296
270.1827
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.33 zu verwerfen. Der Test soll bestätigen, dass p<0.33 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(96,0.33,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 23 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.33 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.33 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0353 =3.53% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;23]

Annahmebereich von H0: [24;96]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;23], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [24;96], so muss die Nullhypothese beibehalten werden.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.33 falsch, weil ja in Wirklichkeit p=0.13 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 24 bis 96, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.13) beträgt nun: P0.1396 (X24) =1- P0.1396 (X23) ≈ 1-0.9989 ≈ 0.0011

Mit 0.11% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.