Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikaments unter p=0,3 gesunken ist. Um dies nachzuweisen, soll ein 75-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? Wie hoch ist die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
100.0006
110.0017
120.0041
130.0091
140.0187
150.0353
160.062
170.1017
180.1566
190.2271
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.3 zu verwerfen. Der Test soll bestätigen, dass p<0.3 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(75,0.3,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 15 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.3 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.3 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0353 =3.53% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;15]

Annahmebereich von H0: [16;75]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;15], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [16;75], so muss die Nullhypothese beibehalten werden.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p> 0,7 ist. Dazu soll die Nullhypothese H0: p=0,7 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=53 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um das gewünschte Ergebnis zu erhalten? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
370.5397
380.6563
390.7608
400.8463
410.9094
420.9516
430.9767
440.99
450.9963
460.9988
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.7 zu verwerfen. Der Test soll bestätigen, dass p>0.7 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(53,0.7,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 42 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;42]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 43 Treffern beginnt.

Ablehnungsbereich von H0: [43;53]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.7 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.7 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0484 =4.84% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [43;53], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;42], so muss die Nullhypothese beibehalten werden.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p< 0,4 ist. Dazu soll die Nullhypothese H0: p=0,4 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=90 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um das gewünschte Ergebnis zu erhalten? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
220.0014
230.0029
240.0058
250.0107
260.019
270.0321
280.0517
290.0797
300.1176
310.1666
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.4 zu verwerfen. Der Test soll bestätigen, dass p<0.4 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(90,0.4,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 27 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.4 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.4 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0321 =3.21% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;27]

Annahmebereich von H0: [28;90]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;27], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [28;90], so muss die Nullhypothese beibehalten werden.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 85 Würfen und einem Signifikanzniveau von 0,1%.
a) In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann.
b) In Wirklichkeit ist der Würfel tatsächlich manipuliert und würfelt nur mit der Wahrscheinlichkeit von 13% eine sechs. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Sechsen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00
10
20
30.0002
40.0008
50.0027
60.0079
70.0197
80.0426
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(85, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 4 weniger als 0.1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0008 =0.08% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;4]

Annahmebereich von H0: [5;85]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;4], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [5;85], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p= 1 6 falsch, weil ja in Wirklichkeit p=0.13 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 5 bis 85, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.13) beträgt nun: P0.1385 (X5) =1- P0.1385 (X4) ≈ 1-0.0104 ≈ 0.9896

Mit 98.96% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.