Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Ein Großhändler beklagt sich, dass gelieferte LED-Leuchtmittel mit einer Wahrscheinlichkeit von p=0,13 bereits nach wenigen Stunden defekt werden. Die herstellende Firma glaubt das nicht und hält die Ausschussquote für viel geringer. Deswegen führt sie einen Test mit 98 Leuchtmitteln durch. Als Signifikanzniveau für diesen Test wird 0,1% festgelegt. In welchem Bereich muss die Anzahl der defekten LED-Leuchtmittel liegen, damit die Firma die Aussage des Großhändlers widerlegt? Wie hoch bleibt die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00
10
20.0001
30.0007
40.0029
50.0089
60.0227
70.0499
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.13 zu verwerfen. Der Test soll bestätigen, dass p<0.13 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(98,0.13,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 3 weniger als 0.1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.13 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.13 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0007 =0.07% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;3]

Annahmebereich von H0: [4;98]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;3], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [4;98], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Mülleimer zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 63 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 5% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer zu triumphieren zu können?

Lösung einblenden
kP(X≤k)
......
50.3883
60.5558
70.7073
80.8252
90.9052
100.9532
110.9789
120.9913
130.9967
140.9989
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(63,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 10 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;10]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 11 Treffern beginnt.

Ablehnungsbereich von H0: [11;63]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0468 =4.68% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [11;63], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;10], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen seine bisherige Trefferwahrscheinlichkeit von p=0,2 inzwischen verbessert. Sein Trainer glaubt ihm sich das nicht. Um seine Verbesserung zu überprüfen, muss der Basketballspieler 67 mal werfen. In welchem Intervall müssen die Treffer liegen, damit sich der Spieler auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
......
140.6416
150.7451
160.8292
170.8923
180.9361
190.9643
200.9812
210.9907
220.9957
230.9981
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.2 zu verwerfen. Der Test soll bestätigen, dass p>0.2 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Annahmebereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(67,0.2,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 19 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Annahmebereich von H0: [0;19]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 20 Treffern beginnt.

Ablehnungsbereich von H0: [20;67]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.2 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.2 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0357 =3.57% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [20;67], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [0;19], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Ein spielsüchtiger 12-Klässler möchte nachweisen, dass ein bestimmter Würfel gezinkt ist und zu selten eine 6 kommt. Dazu macht er einen Signifikanztest mit 57 Würfen und einem Signifikanzniveau von 1%.
a) In welchem Bereich muss die Anzahl der 6er liegen, damit er die Spielbank verklagen kann.
b) In Wirklichkeit ist der Würfel tatsächlich manipuliert und würfelt nur mit der Wahrscheinlichkeit von 13% eine sechs. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Sechsen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
00
10.0004
20.0023
30.0095
40.0289
50.07
60.1412
70.245
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(57, 1 6 ,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 3 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p< 1 6 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0095 =0.95% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;3]

Annahmebereich von H0: [4;57]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;3], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Annahmebereich von H0: [4;57], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p= 1 6 falsch, weil ja in Wirklichkeit p=0.13 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 4 bis 57, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.13) beträgt nun: P0.1357 (X4) =1- P0.1357 (X3) ≈ 1-0.051 ≈ 0.949

Mit 94.9% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.