Aufgabenbeispiele von LGS
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme y so, dass (4|y) eine Lösung dieser Gleichung ist.
Man setzt einfach x = 4 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach y auflösen:
| = | |||
| = | |||
| = | | | ||
| = |
Die Lösung ist somit: (4|5)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (4|-6)
denn
-1⋅
Eine weitere Lösung wäre aber auch: (7|-5)
denn -1⋅
Oder : (1|-7)
denn -1⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung gar kein x mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach y umstellen:
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Für y haben wir die Lösung ja oben schon erhalten: y =
Die Lösung des LGS ist damit: (-6|4)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
|
= | ||
|
|
= | ||
|
|
= | |
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = 2
Die Lösung des LGS ist damit: (-6|2)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 5 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = -3
Die Lösung des LGS ist damit: (1|-3)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
|
= |
|
|⋅ 5 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das x
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 20 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
x =
=
=
also
x = 5
Die Lösung des LGS ist damit: (5|1)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = 1 und y = -5 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
-1x
2x
Jetzt muss man einfach die Lösungen x = 1 und y = -5 einsetzen und ausrechnen:
-1x
2x
So erhält mam als eine von unendlich vielen Lösungen:
-1x
2x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das x
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
x =
=
=
also
x = -5
Die Lösung des LGS ist damit: (-5|4)
LGS Anwendungen
Beispiel:
Carola war 5 Stunden wandern. Danach hat sie 4 Schokobonbons gegessen. Als sie diese Werte in ihre Fitness-App einträgt, meldet diese, dass sie durch beide Aktionen zusammen 1380 kcal Energie verbraucht hätte.
Am Tag zuvor war sie 4 Stunden wandern und hat 4 Schokobonbons gegessen, wofür ihre Fitness-App einen Ernergieverbrauch von 1080 kcal berechnete.
Wie viele kcal verliert man bei einer Stunde Wandern, wie viel kcal hat ein Schokobonbon?
Wir bezeichnen x als kcal-Verbrauch bei einer Stunde Wandern und y als kcal eines Schokobonbons und
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 30
Die Lösung des LGS ist damit: (300|30)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
kcal-Verbrauch bei einer Stunde Wandern (x-Wert): 300
kcal eines Schokobonbons (y-Wert): 30
