Aufgabenbeispiele von 2. Strahlensatz

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


2. Strahlensatz (gleiche Seite)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die beiden blauen Geraden sind parallel.
Berechne x.

Lösung einblenden

Nach dem 2. Strahlensatz gilt:

x 27,5 = 9 9 +13,5

x 27,5 = 9 22.5
1 27.5 x = 9 22.5 |⋅ 27.5
x = 11

2. Strahlensatz (2 Seiten)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die beiden blauen Geraden sind parallel.
Berechne x.

Lösung einblenden

Nach dem 2. Strahlensatz gilt:

x 9 = 20 10

x 9 = 20 10
1 9 x = 2 |⋅ 9
x = 18

2. Strahlensatz (2 Seiten)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die beiden blauen Geraden sind parallel.
Berechne x.

Lösung einblenden

Nach dem 2. Strahlensatz gilt:

x 14 = 9 18

x 14 = 9 18
1 14 x = 1 2 |⋅ 14
x = 7

doppelter Strahlensatz (klein 2)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die beiden blauen Geraden sind parallel.
Berechne x und y.

Lösung einblenden

Nach dem 1. Strahlensatz gilt:

x 9 = 7 10,5

x 9 = 7 10,5
1 9 x = 7 10.5 |⋅ 9
x = 63 10.5 = 6

Nach dem 2. Strahlensatz gilt:

y 7,5 = 7 10,5

y 7,5 = 7 10,5
1 7.5 y = 7 10.5 |⋅ 7.5
y = 5

Strahlensatz Anwendungen

Beispiel:

Die Grundfläche einer senkrechten quadratischen Pyramide ist b=30 m lang. Die Länge der Seitenkanten ist l=15 m. Die Pyramide wird parallel zur Grundfläche abgetragen, so dass ein Pyramidenstumpf entsteht. Die Länge der Seitenkanten l verkürzt sich dadurch von 15 auf 9 m. Wie breit ist dann die quadratische Fläche der Oberseite des entstehenden Pyramidenstumpfs?

Lösung einblenden

Wenn man in die Skizze ein paar Strecken einzeichnet, erkennt man eine Strahlensatzfigur:

Dabei gilt nach dem 2. Strahlensatz:

b b2 = l2+l1 l2 bzw. b2 b = l2 l2+l1

Aus dem Text können wir herauslesen:

l = l2 + l1 =15

l1 = 9

l2 = 6

b = 30

Gesucht ist die Breite der neuen Oberseite. Wir wählen also b2 als x.

Jetzt können wir die Werte in die obige Strahlensatzgleichung einsetzen und erhalten:

x 30 = 6 6 +9

x 30 = 2 5
1 30 x = 2 5 |⋅ 30
x = 12

b2 ist also 12 .

Die Lösung ist somit: 12