Aufgabenbeispiele von Trigonometrie

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten von trigonometrischen Funktionen

Beispiel:

Berechne die Ableitung von f mit f(x)= -4 x 2 · sin( 3x ) und vereinfache:

Lösung einblenden

f(x)= -4 x 2 · sin( 3x )

f'(x)= -4 · 2x · sin( 3x ) -4 x 2 · cos( 3x ) · 3

= -8 x · sin( 3x ) -4 x 2 · 3 cos( 3x )

= -8 x · sin( 3x ) -12 x 2 · cos( 3x )

Ableiten von trigonometrischen Funktionen BF

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 x · sin( -3x ) und vereinfache:

Lösung einblenden

f(x)= -2 x · sin( -3x )

f'(x)= -2 · 1 · sin( -3x ) -2 x · cos( -3x ) · ( -3 )

= -2 sin( -3x ) -2 x · ( -3 cos( -3x ) )

= -2 sin( -3x ) +6 x · cos( -3x )

Integral über trigon. Funktion

Beispiel:

Bestimme das Integral 1 2 π π 3 sin( -5x ) x .

Lösung einblenden
1 2 π π 3 sin( -5x ) x

= [ 3 5 cos( -5x ) ] 1 2 π π

= 3 5 cos( -5π ) - 3 5 cos( -5( 1 2 π ) )

= 3 5 ( -1 ) - 3 5 0

= - 3 5 +0

= - 3 5 +0

= - 3 5


= -0,6

Extrempunkte bei trigon. Fktn. BF (einfach)

Beispiel:

Bestimme die Tiefpunkte des Graphen von f mit f(x)= 3 sin( 1 4 x ) +2 im Intervall [0; 8π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=2 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|2).

Mit Hilfe von b= 1 4 und der Periodenformel p= b erhalten wir als Periode:
p= 1 4 = 8π

Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1= 6π 6π . .

Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter 2, also bei y=-1.

Wir erhalten also als Ergebnis einen Tiefpunkt bei ( 6π |-1)

Extrempunkte bei trigonometr. Fktn. BF

Beispiel:

Bestimme die Hochpunkte des Graphen von f mit f(x)= 2 sin( 2x ) +2 im Intervall [0; π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=2 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|2).

Mit Hilfe von b=2 und der Periodenformel p= b erhalten wir als Periode:
p= 2 = π

Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1= 1 4 π 1 4 π . .

Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über 2, also bei y=4.

Wir erhalten also als Ergebnis einen Hochpunkt bei ( 1 4 π |4)

Extremstellen bei trigon. Fktn (LF)

Beispiel:

Bestimme die Hochpunkte des Graphen von f mit f(x)= 3 cos( 3 4 ( x + 1 4 π)) -1 im Intervall [0; 8 3 π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-1 in y-Richtung und um c= - 1 4 π nach rechts verschoben ist.

Der erste Hochpunkt wäre also im Punkt P( - 1 4 π |-1).

Mit Hilfe von b= 3 4 und der Periodenformel p= b erhalten wir als Periode:
p= 3 4 = 8 3 π

Der gesuchte Hochpunkt ist bei cos(x) zu Beginn der Periode,
also bei x1= - 1 4 π + 0 - 1 4 π .
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren, damit der x-Wert im gesuchten Intervall [0; 8 3 π ) liegt,
also x1= - 1 4 π + 8 3 π 29 12 π .

Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über -1, also bei y=2.

Wir erhalten also als Ergebnis einen Hochpunkt bei ( 29 12 π |2)

Nullstellen mit dem WTR

Beispiel:

Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit f(x)= 4 cos( 1 4 x ) -4 innerhalb einer Periode, also im Intervall [0; 8π [.

Lösung einblenden

Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.

Daraus ergibt sich folgende Gleichung:

4 cos( 1 4 x ) -4 = 0 | +4
4 cos( 1 4 x ) = 4 |:4
canvas
cos( 1 4 x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1 4 x = 0 |⋅ 4
x = 0

L={0}

Die einzige Nullstelle in der Periode [0; 8π ) ist also bei x = 0.

trigon. Anwendungsaufgabe 2

Beispiel:

In einem Wellenbad kann man an einer bestimmten Stelle die Wasserhöhe zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit f(t)= 15 sin(2π t ) +70 (0 ≤ t ≤ 1) angeben.

  1. Bestimme die Periode dieses Vorgangs.
  2. Zu welcher Zeit (in s) ist die Wasserhöhe am höchsten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
  1. Periodenlänge

    Aus dem Funktionsterm können wir den Faktor b = 2π herauslesen und in die Periodenformel einsetzen:

    Somit gilt für die Periodenlänge: p = 2 π b = 2 π 2π = 1

  2. t-Wert des Maximums (HP)

    Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 0.25 s.

    Die Lösung ist also: 0.25 s.