Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= x 2 +7x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +7x = 0
x ( x +7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +7 = 0 | -7
x2 = -7

L={ -7 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= 2 x 2 -6x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -6x = 0
2 x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+3 2 = 1.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(1.5|f(1.5)) mit f(1.5) = 2 1.5 2 -61.5 = 4,5 -9 = -4.5.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=3 , Scheitel: S(1.5|-4.5).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 -10x +2 .

Lösung einblenden

1. Weg

x 2 -10x +2

Man erweitert die ersten beiden Summanden ( x 2 -10x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -10x durch 2x und quadriert diese Ergebnis -5 zu 25. Diese 25 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 25, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -10x +25 -25 +2

= ( x -5 ) 2 -25 +2

= ( x -5 ) 2 -23

Jetzt kann man den Scheitel leicht ablesen: S(5|-23).


2. Weg

Wir betrachten nun nur x 2 -10x . Deren Parabel sieht ja genau gleich aus wie x 2 -10x +2 nur um 2 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -10x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -10x = 0
x ( x -10 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -10 = 0 | +10
x2 = 10

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(5|f(5)).

f(5) = 5 2 -105 +2 = 25 -50 +2 = -23

also: S(5|-23).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 -6x -3 .

Lösung einblenden

1. Weg

x 2 -6x -3

Man erweitert die ersten beiden Summanden ( x 2 -6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -6x durch 2x und quadriert diese Ergebnis -3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -6x +9 -9 -3

= x 2 -6x +9 + 1 · ( -9 ) -3

= ( x -3 ) 2 -9 -3

= ( x -3 ) 2 -12

Jetzt kann man den Scheitel leicht ablesen: S(3|-12).


2. Weg

Wir betrachten nun nur x 2 -6x . Deren Parabel sieht ja genau gleich aus wie x 2 -6x -3 nur um -3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(3|f(3)).

f(3) = 3 2 -63 -3 = 9 -18 -3 = -12

also: S(3|-12).


Extremwertaufgaben (Anwend.)

Beispiel:

Die Summe zweier Zahlen ist 120 . Wie groß muss man die erste Zahl wählen, damit das Produkt der beiden Zahlen größtmöglich wird? Wie groß ist dann dieses Produkt.

Lösung einblenden

1. Weg

- x 2 +120x

= -( x 2 -120x )

Man erweitert die ersten beiden Summanden ( x 2 -120x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -120x durch 2x und quadriert diese Ergebnis -60 zu 3600. Diese 3600 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 3600, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -120x +3600 -3600 )

= -( x 2 -120x +3600 ) -1 · ( -3600 )

= - ( x -60 ) 2 +3600

= - ( x -60 ) 2 +3600

Jetzt kann man den Scheitel leicht ablesen: S(60|3600).


2. Weg

Von - x 2 +120x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +120x = 0
x ( -x +120 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +120 = 0 | -120
-x = -120 |:(-1 )
x2 = 120

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(60|f(60)).

f(60) = - 60 2 +12060 = -3600 +7200 = 3600

also: S(60|3600).


Für x=60 bekommen wir also mit 3600 einen extremalen Wert von - x 2 +120x