Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= x 2 -8x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -8x = 0
x ( x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -8 = 0 | +8
x2 = 8

L={0; 8 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= 2 x 2 +4x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +4x = 0
2 x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -2+0 2 = -1 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-1|f(-1)) mit f(-1) = 2 ( -1 ) 2 +4( -1 ) = 2 -4 = -2.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-2 und x2=0 , Scheitel: S(-1|-2).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 -8x +1 .

Lösung einblenden

1. Weg

x 2 -8x +1

Man erweitert die ersten beiden Summanden ( x 2 -8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -8x durch 2x und quadriert diese Ergebnis -4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -8x +16 -16 +1

= ( x -4 ) 2 -16 +1

= ( x -4 ) 2 -15

Jetzt kann man den Scheitel leicht ablesen: S(4|-15).


2. Weg

Wir betrachten nun nur x 2 -8x . Deren Parabel sieht ja genau gleich aus wie x 2 -8x +1 nur um 1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -8x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -8x = 0
x ( x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -8 = 0 | +8
x2 = 8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(4|f(4)).

f(4) = 4 2 -84 +1 = 16 -32 +1 = -15

also: S(4|-15).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= 1 2 x 2 -2x +5 .

Lösung einblenden

1. Weg

1 2 x 2 -2x +5

= 1 2 ( x 2 -4x ) +5

Man erweitert die ersten beiden Summanden ( x 2 -4x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -4x durch 2x und quadriert diese Ergebnis -2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 1 2 ( x 2 -4x +4 -4 ) +5

= 1 2 ( x 2 -4x +4 ) + 1 2 · ( -4 ) +5

= 1 2 ( x -2 ) 2 -2 +5

= 1 2 ( x -2 ) 2 +3

Jetzt kann man den Scheitel leicht ablesen: S(2|3).


2. Weg

Wir betrachten nun nur 1 2 x 2 -2x . Deren Parabel sieht ja genau gleich aus wie 1 2 x 2 -2x +5 nur um 5 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 1 2 x 2 -2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

1 2 x 2 -2x = 0 |⋅ 2
2( 1 2 x 2 -2x ) = 0
x 2 -4x = 0
x ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -4 = 0 | +4
x2 = 4

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(2|f(2)).

f(2) = 1 2 2 2 -22 +5 = 2 -4 +5 = 3

also: S(2|3).


Extremwertaufgaben (Anwend.)

Beispiel:

Ein Rechteck hat den Umfang 340 cm. Wie breit muss es sein, damit der Flächeninhalt des Rechtecks am größten wird.

Lösung einblenden

1. Weg

- x 2 +170x

= -( x 2 -170x )

Man erweitert die ersten beiden Summanden ( x 2 -170x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -170x durch 2x und quadriert diese Ergebnis -85 zu 7225. Diese 7225 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 7225, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -170x +7225 -7225 )

= -( x 2 -170x +7225 ) -1 · ( -7225 )

= - ( x -85 ) 2 +7225

= - ( x -85 ) 2 +7225

Jetzt kann man den Scheitel leicht ablesen: S(85|7225).


2. Weg

Von - x 2 +170x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +170x = 0
x ( -x +170 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +170 = 0 | -170
-x = -170 |:(-1 )
x2 = 170

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(85|f(85)).

f(85) = - 85 2 +17085 = -7225 +14450 = 7225

also: S(85|7225).


Für x=85 bekommen wir also mit 7225 einen extremalen Wert von - x 2 +170x