Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= 2 x 2 -5x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -5x = 0
x ( 2x -5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x -5 = 0 | +5
2x = 5 |:2
x2 = 5 2 = 2.5

L={0; 5 2 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= x 2 -6x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

L={0; 6 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+6 2 = 3 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(3|f(3)) mit f(3) = 3 2 -63 = 9 -18 = -9.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=6 , Scheitel: S(3|-9).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 +2x -4 .

Lösung einblenden

1. Weg

x 2 +2x -4

Man erweitert die ersten beiden Summanden ( x 2 +2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 2x durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +2x +1 -1 -4

= ( x +1 ) 2 -1 -4

= ( x +1 ) 2 -5

Jetzt kann man den Scheitel leicht ablesen: S(-1|-5).


2. Weg

Wir betrachten nun nur x 2 +2x . Deren Parabel sieht ja genau gleich aus wie x 2 +2x -4 nur um -4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|f(-1)).

f(-1) = ( -1 ) 2 +2( -1 ) -4 = 1 -2 -4 = -5

also: S(-1|-5).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 +6x -4 .

Lösung einblenden

1. Weg

x 2 +6x -4

Man erweitert die ersten beiden Summanden ( x 2 +6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 6x durch 2x und quadriert diese Ergebnis 3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +6x +9 -9 -4

= x 2 +6x +9 + 1 · ( -9 ) -4

= ( x +3 ) 2 -9 -4

= ( x +3 ) 2 -13

Jetzt kann man den Scheitel leicht ablesen: S(-3|-13).


2. Weg

Wir betrachten nun nur x 2 +6x . Deren Parabel sieht ja genau gleich aus wie x 2 +6x -4 nur um -4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +6x = 0
x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6 = 0 | -6
x2 = -6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-3|f(-3)).

f(-3) = ( -3 ) 2 +6( -3 ) -4 = 9 -18 -4 = -13

also: S(-3|-13).


Extremwertaufgaben (Anwend.)

Beispiel:

Ein Rechteck hat den Umfang 300 cm. Wie breit muss es sein, damit der Flächeninhalt des Rechtecks am größten wird.

Lösung einblenden

1. Weg

- x 2 +150x

= -( x 2 -150x )

Man erweitert die ersten beiden Summanden ( x 2 -150x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -150x durch 2x und quadriert diese Ergebnis -75 zu 5625. Diese 5625 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 5625, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -150x +5625 -5625 )

= -( x 2 -150x +5625 ) -1 · ( -5625 )

= - ( x -75 ) 2 +5625

= - ( x -75 ) 2 +5625

Jetzt kann man den Scheitel leicht ablesen: S(75|5625).


2. Weg

Von - x 2 +150x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +150x = 0
x ( -x +150 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +150 = 0 | -150
-x = -150 |:(-1 )
x2 = 150

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(75|f(75)).

f(75) = - 75 2 +15075 = -5625 +11250 = 5625

also: S(75|5625).


Für x=75 bekommen wir also mit 5625 einen extremalen Wert von - x 2 +150x