Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 2 Schülerinnen und Schüler den katholischen Religionsunterricht, 4 den evangelischen, und 4 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 2 + 4 + 4=10
Hieraus ergibt sich für ...
rk: p= =
ev: p= =
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'
Einzel-Wahrscheinlichkeiten :"3er-Zahl": ; "nicht 3er-Zahl": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben kein '3er-Zahl' bzw. 0 mal '3er-Zahl'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '3er-Zahl')=1- =
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl | |
| 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl | |
| nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
| nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl | |
| nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl | |
| nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl |
Einzel-Wahrscheinlichkeiten: 3er-Zahl: ; nicht 3er-Zahl: ;
Die relevanten Pfade sind:
'3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P=)
'nicht 3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P=)
'nicht 3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P=)
'3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P=)
'3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P=)
'nicht 3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P=)
'3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ; 5: ; 6: ;
Die relevanten Pfade sind:
'1'-'6' (P=)
'6'-'1' (P=)
'2'-'5' (P=)
'5'-'2' (P=)
'3'-'4' (P=)
'4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: König: ; nicht König: ;
Die relevanten Pfade sind:
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind verschiedene Kugeln, 9 vom Typ rot, 6 vom Typ blau und 5 vom Typ gelb. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| rot -> gelb | |
| blau -> rot | |
| blau -> blau | |
| blau -> gelb | |
| gelb -> rot | |
| gelb -> blau | |
| gelb -> gelb |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ; gelb: ;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
'blau'-'blau' (P=)
'gelb'-'gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 10 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:
'1'-'2' (P=)
'2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Kombinatorik (ohne Binom.)
Beispiel:
Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 4 Hosen entscheiden. Für die Füße stehen ihr 6 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?
Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 4 = 12 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 4 ⋅ 6 = 72 Möglichkeiten ergeben.
Kombinatorik
Beispiel:
Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 22 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 4 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?
Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 22 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 21 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 20 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 22 ⋅ 21 ⋅ 20 ⋅ 19 = 175560 Möglichkeiten.
