Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'prim'-'prim' (P= 1 4 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 = 1 4


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 5 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 3 32
1 -> 3 3 32
1 -> 4 3 64
2 -> 1 3 32
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 32
3 -> 1 3 32
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 32
4 -> 1 3 64
4 -> 2 1 32
4 -> 3 1 32
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 3 8 ; 2: 1 4 ; 3: 1 4 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 3 64 )
'4'-'1' (P= 3 64 )
'2'-'3' (P= 1 16 )
'3'-'2' (P= 1 16 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 1 16 + 1 16 = 7 32


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 2 ; "nicht Dame": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Dame')=1- 3 14 = 11 14

EreignisP
Dame -> Dame 3 14
Dame -> nicht Dame 2 7
nicht Dame -> Dame 2 7
nicht Dame -> nicht Dame 3 14

Einzel-Wahrscheinlichkeiten: Dame: 1 2 ; nicht Dame: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 2 7 )
'nicht Dame'-'Dame' (P= 2 7 )
'nicht Dame'-'nicht Dame' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 7 + 2 7 + 3 14 = 11 14


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 3 rote, 2 blaue , 3 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 3 ; "nicht schwarz": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 14 33 = 19 33

EreignisP
schwarz -> schwarz 1 11
schwarz -> nicht schwarz 8 33
nicht schwarz -> schwarz 8 33
nicht schwarz -> nicht schwarz 14 33

Einzel-Wahrscheinlichkeiten: schwarz: 1 3 ; nicht schwarz: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'schwarz'-'nicht schwarz' (P= 8 33 )
'nicht schwarz'-'schwarz' (P= 8 33 )
'schwarz'-'schwarz' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 33 + 8 33 + 1 11 = 19 33


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 2 23 1 22 21 21
= 1 4 1 23 1 22 7 7
= 1 2024

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 8 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 5 ist?

Lösung einblenden
EreignisP
1 -> 1 15 92
1 -> 2 10 69
1 -> 3 5 46
2 -> 1 10 69
2 -> 2 7 69
2 -> 3 2 23
3 -> 1 5 46
3 -> 2 2 23
3 -> 3 5 92

Einzel-Wahrscheinlichkeiten: 1: 5 12 ; 2: 1 3 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 2 23 )
'3'-'2' (P= 2 23 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 23 + 2 23 = 4 23


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 1 36 )
'2'-'1' (P= 1 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


Kombinatorik (ohne Binom.)

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 6 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.

Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 18 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 5 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 16 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 18 ⋅ 17 ⋅ 16 ⋅ 15 ⋅ 14 = 1028160 Möglichkeiten.