Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 3 blaue, 6 grüne, 5 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 6 + 5 + 6=20

Hieraus ergibt sich für ...

blau: p= 3 20

grün: p= 6 20 = 3 10

gelb: p= 5 20 = 1 4

rot: p= 6 20 = 3 10

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'prim'-'nicht prim' (P= 1 4 )
'nicht prim'-'prim' (P= 1 4 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 = 1 2


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 5 ; "nicht rot": 2 5 ;

EreignisP
rot -> rot -> rot 27 125
rot -> rot -> nicht rot 18 125
rot -> nicht rot -> rot 18 125
rot -> nicht rot -> nicht rot 12 125
nicht rot -> rot -> rot 18 125
nicht rot -> rot -> nicht rot 12 125
nicht rot -> nicht rot -> rot 12 125
nicht rot -> nicht rot -> nicht rot 8 125

Einzel-Wahrscheinlichkeiten: rot: 3 5 ; nicht rot: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'nicht rot' (P= 18 125 )
'rot'-'nicht rot'-'rot' (P= 18 125 )
'nicht rot'-'rot'-'rot' (P= 18 125 )
'rot'-'rot'-'rot' (P= 27 125 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

18 125 + 18 125 + 18 125 + 27 125 = 81 125


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 4 blaue , 10 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 20 ; "nicht rot": 17 20 ;

EreignisP
rot -> rot 3 190
rot -> nicht rot 51 380
nicht rot -> rot 51 380
nicht rot -> nicht rot 68 95

Einzel-Wahrscheinlichkeiten: rot: 3 20 ; nicht rot: 17 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 3 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 190 = 3 190


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 2 5 ; "nicht Ass": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Ass' alle Möglichkeiten enthalten, außer eben 2 mal 'Ass'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Ass')=1- 2 15 = 13 15

EreignisP
Ass -> Ass 2 15
Ass -> nicht Ass 4 15
nicht Ass -> Ass 4 15
nicht Ass -> nicht Ass 1 3

Einzel-Wahrscheinlichkeiten: Ass: 2 5 ; nicht Ass: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'nicht Ass' (P= 4 15 )
'nicht Ass'-'Ass' (P= 4 15 )
'nicht Ass'-'nicht Ass' (P= 1 3 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 1 3 = 13 15


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 15 17
= 3 6 5 17
= 5 34

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'

Einzel-Wahrscheinlichkeiten :"15": 2 27 ; "nicht 15": 25 27 ;

EreignisP
15 -> 15 1 351
15 -> nicht 15 25 351
nicht 15 -> 15 25 351
nicht 15 -> nicht 15 100 117

Einzel-Wahrscheinlichkeiten: 15: 2 27 ; nicht 15: 25 27 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'15'-'15' (P= 1 351 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 351 = 1 351


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 4 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 8 4 7
= 4 2 1 7
= 2 7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 6 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.