Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 7 blaue, 4 grüne, 9 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 4 + 9 + 4=24

Hieraus ergibt sich für ...

blau: p= 7 24

grün: p= 4 24 = 1 6

gelb: p= 9 24 = 3 8

rot: p= 4 24 = 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 3 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'6er'-'6er' (P= 1 216 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 216 = 1 216


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 3 32
1 -> 3 3 32
1 -> 4 3 64
2 -> 1 3 32
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 32
3 -> 1 3 32
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 32
4 -> 1 3 64
4 -> 2 1 32
4 -> 3 1 32
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 3 8 ; 2: 1 4 ; 3: 1 4 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 3 32 )
'2'-'1' (P= 3 32 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 32 + 3 32 = 3 16


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'andere'-'andere'-'andere' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 28 = 11 28


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 7 Kugeln mit einer Eins beschriftet, 3 Kugeln mit einer Zwei, 6 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 21 190
1 -> 2 21 380
1 -> 3 21 190
1 -> 4 7 95
2 -> 1 21 380
2 -> 2 3 190
2 -> 3 9 190
2 -> 4 3 95
3 -> 1 21 190
3 -> 2 9 190
3 -> 3 3 38
3 -> 4 6 95
4 -> 1 7 95
4 -> 2 3 95
4 -> 3 6 95
4 -> 4 3 95

Einzel-Wahrscheinlichkeiten: 1: 7 20 ; 2: 3 20 ; 3: 3 10 ; 4: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 6 95 )
'4'-'3' (P= 6 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

6 95 + 6 95 = 12 95


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 6 2 5 1 4 3 3
= 1 1 5 1 4 1
= 1 20

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 3 32
1 -> 3 3 32
1 -> 4 3 64
2 -> 1 3 32
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 32
3 -> 1 3 32
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 32
4 -> 1 3 64
4 -> 2 1 32
4 -> 3 1 32
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 3 8 ; 2: 1 4 ; 3: 1 4 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 3 32 )
'3'-'1' (P= 3 32 )
'2'-'2' (P= 1 16 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 32 + 3 32 + 1 16 = 1 4


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'prim'-'prim' (P= 1 4 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 = 1 4


Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 24 Schüler, in der 8b 30 Schüler und in der in der 8c 21 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 24 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 30 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 24 ⋅ 30 = 720 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 21 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 24 ⋅ 30 ⋅ 21 = 15120 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 27 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 27 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 27 = 810 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 27 ⋅ 30 = 24300 Möglichkeiten ergeben.