Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 3 blaue, 4 grüne, 9 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 4 + 9 + 4=20

Hieraus ergibt sich für ...

blau: p= 3 20

grün: p= 4 20 = 1 5

gelb: p= 9 20

rot: p= 4 20 = 1 5

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'keine_6'-'keine_6' (P= 25 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 36 = 25 36


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 1 64 )
'4'-'3' (P= 1 64 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 64 + 1 64 = 1 32


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 9 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 3 4 ; "nicht Mädchen": 1 4 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 21 55
Mädchen -> Mädchen -> nicht Mädchen 9 55
Mädchen -> nicht Mädchen -> Mädchen 9 55
Mädchen -> nicht Mädchen -> nicht Mädchen 9 220
nicht Mädchen -> Mädchen -> Mädchen 9 55
nicht Mädchen -> Mädchen -> nicht Mädchen 9 220
nicht Mädchen -> nicht Mädchen -> Mädchen 9 220
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 220

Einzel-Wahrscheinlichkeiten: Mädchen: 3 4 ; nicht Mädchen: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 9 220 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 9 220 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 9 220 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 220 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 220 + 9 220 + 9 220 + 1 220 = 7 55


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 4 Kugeln mit einer Eins beschriftet, 9 Kugeln mit einer Zwei, 9 mit Drei und 3 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 4 ergeben?

Lösung einblenden
EreignisP
1 -> 1 1 50
1 -> 2 3 50
1 -> 3 3 50
1 -> 4 1 50
2 -> 1 3 50
2 -> 2 3 25
2 -> 3 27 200
2 -> 4 9 200
3 -> 1 3 50
3 -> 2 27 200
3 -> 3 3 25
3 -> 4 9 200
4 -> 1 1 50
4 -> 2 9 200
4 -> 3 9 200
4 -> 4 1 100

Einzel-Wahrscheinlichkeiten: 1: 4 25 ; 2: 9 25 ; 3: 9 25 ; 4: 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 3 50 )
'3'-'1' (P= 3 50 )
'2'-'2' (P= 3 25 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 50 + 3 50 + 3 25 = 6 25


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 10 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 13 10 12
= 1 13 10 4
= 5 26

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 49 400
1 -> 2 7 40
1 -> 3 21 400
2 -> 1 7 40
2 -> 2 1 4
2 -> 3 3 40
3 -> 1 21 400
3 -> 2 3 40
3 -> 3 9 400

Einzel-Wahrscheinlichkeiten: 1: 7 20 ; 2: 1 2 ; 3: 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 3 40 )
'3'-'2' (P= 3 40 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 40 + 3 40 = 3 20


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 8 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 2 3 ; "nicht Mädchen": 1 3 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 14 55
Mädchen -> Mädchen -> nicht Mädchen 28 165
Mädchen -> nicht Mädchen -> Mädchen 28 165
Mädchen -> nicht Mädchen -> nicht Mädchen 4 55
nicht Mädchen -> Mädchen -> Mädchen 28 165
nicht Mädchen -> Mädchen -> nicht Mädchen 4 55
nicht Mädchen -> nicht Mädchen -> Mädchen 4 55
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 55

Einzel-Wahrscheinlichkeiten: Mädchen: 2 3 ; nicht Mädchen: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 28 165 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 28 165 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 28 165 )
'Mädchen'-'Mädchen'-'Mädchen' (P= 14 55 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

28 165 + 28 165 + 28 165 + 14 55 = 42 55


Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 24 Schüler, in der 8b 24 Schüler und in der in der 8c 24 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 24 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 24 ⋅ 24 = 576 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 24 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 24 ⋅ 24 ⋅ 24 = 13824 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 7 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 3 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 7 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 7 ⋅ 3 = 21 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 7 ⋅ 3 ⋅ 8 = 168 Möglichkeiten ergeben.