Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 6 Schülerinnen und Schüler den katholischen Religionsunterricht, 8 den evangelischen, und 6 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 8 + 6=20

Hieraus ergibt sich für ...

rk: p= 6 20 = 3 10

ev: p= 8 20 = 2 5

Eth: p= 6 20 = 3 10

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 3 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'6er'-'6er' (P= 1 216 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 216 = 1 216


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 25
1 -> 2 7 75
1 -> 3 1 15
2 -> 1 7 75
2 -> 2 49 225
2 -> 3 7 45
3 -> 1 1 15
3 -> 2 7 45
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: 1: 1 5 ; 2: 7 15 ; 3: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 7 75 )
'2'-'1' (P= 7 75 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 75 + 7 75 = 14 75


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; nicht deutsch: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 + 11 28 = 121 140


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 1 15
7 -> 8 2 15
7 -> 9 2 15
8 -> 7 2 15
8 -> 8 1 15
8 -> 9 2 15
9 -> 7 2 15
9 -> 8 2 15
9 -> 9 1 15

Einzel-Wahrscheinlichkeiten: 7: 1 3 ; 8: 1 3 ; 9: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 2 15 )
'9'-'8' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 = 4 15


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 15 17
= 3 6 5 17
= 5 34

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 1 64 )
'4'-'3' (P= 1 64 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 64 + 1 64 = 1 32


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 5 Schüler mit NWT-Profil, 10 Schüler mit sprachlichem Profil, 10 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 6 ; "nicht NWT": 5 6 ;

EreignisP
NWT -> NWT 2 87
NWT -> nicht NWT 25 174
nicht NWT -> NWT 25 174
nicht NWT -> nicht NWT 20 29

Einzel-Wahrscheinlichkeiten: NWT: 1 6 ; nicht NWT: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 20 29 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

20 29 = 20 29


Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 4 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 4 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 4 = 36 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 27 Schüler, in der 8b 30 Schüler und in der in der 8c 24 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 27 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 30 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 27 ⋅ 30 = 810 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 24 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 27 ⋅ 30 ⋅ 24 = 19440 Möglichkeiten ergeben.