Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einem Kartenstapel sind 9 Asse, 8 Könige, 6 Damen, und 7 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 8 + 6 + 7=30
Hieraus ergibt sich für ...
Ass: p= =
König: p= =
Dame: p= =
Bube: p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Zahl"?
Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'
Einzel-Wahrscheinlichkeiten :"Zahl": ; "nicht Zahl": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Zahl' alle Möglichkeiten enthalten, außer eben kein 'Zahl' bzw. 0 mal 'Zahl'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Zahl')=1- =
| Ereignis | P |
|---|---|
| Zahl -> Zahl -> Zahl | |
| Zahl -> Zahl -> nicht Zahl | |
| Zahl -> nicht Zahl -> Zahl | |
| Zahl -> nicht Zahl -> nicht Zahl | |
| nicht Zahl -> Zahl -> Zahl | |
| nicht Zahl -> Zahl -> nicht Zahl | |
| nicht Zahl -> nicht Zahl -> Zahl | |
| nicht Zahl -> nicht Zahl -> nicht Zahl |
Einzel-Wahrscheinlichkeiten: Zahl: ; nicht Zahl: ;
Die relevanten Pfade sind:
'Zahl'-'nicht Zahl'-'nicht Zahl' (P=)
'nicht Zahl'-'Zahl'-'nicht Zahl' (P=)
'nicht Zahl'-'nicht Zahl'-'Zahl' (P=)
'Zahl'-'Zahl'-'nicht Zahl' (P=)
'Zahl'-'nicht Zahl'-'Zahl' (P=)
'nicht Zahl'-'Zahl'-'Zahl' (P=)
'Zahl'-'Zahl'-'Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal schwarz und 1 mal grün"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> schwarz | |
| rot -> grün | |
| schwarz -> rot | |
| schwarz -> schwarz | |
| schwarz -> grün | |
| grün -> rot | |
| grün -> schwarz | |
| grün -> grün |
Einzel-Wahrscheinlichkeiten: rot: ; schwarz: ; grün: ;
Die relevanten Pfade sind:
'schwarz'-'grün' (P=)
'grün'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote und 8 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:
'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: 3: ; nicht 3: ;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal König' alle Möglichkeiten enthalten, außer eben kein 'König' bzw. 0 mal 'König'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'König')=1- =
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: König: ; nicht König: ;
Die relevanten Pfade sind:
'König'-'nicht König' (P=)
'nicht König'-'König' (P=)
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 9-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 9 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 362880 Möglichkeiten.
Kombinatorik
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 21-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?
Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 21 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 20 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 19 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 21 ⋅ 20 ⋅ 19 ⋅ 18 ⋅ 17 = 2441880 Möglichkeiten, die 21 Möglichkeiten (Schülerin) auf die 5 "Ziehungen" (geloste) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.
Wir müssen deswegen die 2441880 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 20349 Möglichkeiten für 5er-Gruppen, die aus 21 Elementen (Schülerin) gebildet werden.
