Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 5 blaue, 10 grüne, 3 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 10 + 3 + 6=24

Hieraus ergibt sich für ...

blau: p= 5 24

grün: p= 10 24 = 5 12

gelb: p= 3 24 = 1 8

rot: p= 6 24 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "1 mal Zahl und 2 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
'Wappen'-'Wappen'-'Zahl' (P= 1 8 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 2 5 ; "nicht blau": 3 5 ;

EreignisP
blau -> blau -> blau 8 125
blau -> blau -> nicht blau 12 125
blau -> nicht blau -> blau 12 125
blau -> nicht blau -> nicht blau 18 125
nicht blau -> blau -> blau 12 125
nicht blau -> blau -> nicht blau 18 125
nicht blau -> nicht blau -> blau 18 125
nicht blau -> nicht blau -> nicht blau 27 125

Einzel-Wahrscheinlichkeiten: blau: 2 5 ; nicht blau: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau'-'nicht blau' (P= 12 125 )
'blau'-'nicht blau'-'blau' (P= 12 125 )
'nicht blau'-'blau'-'blau' (P= 12 125 )
'blau'-'blau'-'blau' (P= 8 125 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 125 + 12 125 + 12 125 + 8 125 = 44 125


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 7 vom Typ Herz, 9 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 12 145
Kreuz -> Herz 21 290
Kreuz -> Pik 27 290
Kreuz -> Karo 3 58
Herz -> Kreuz 21 290
Herz -> Herz 7 145
Herz -> Pik 21 290
Herz -> Karo 7 174
Pik -> Kreuz 27 290
Pik -> Herz 21 290
Pik -> Pik 12 145
Pik -> Karo 3 58
Karo -> Kreuz 3 58
Karo -> Herz 7 174
Karo -> Pik 3 58
Karo -> Karo 2 87

Einzel-Wahrscheinlichkeiten: Kreuz: 3 10 ; Herz: 7 30 ; Pik: 3 10 ; Karo: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 12 145 )
'Herz'-'Herz' (P= 7 145 )
'Pik'-'Pik' (P= 12 145 )
'Karo'-'Karo' (P= 2 87 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 145 + 7 145 + 12 145 + 2 87 = 103 435


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 9 rote, 9 blaue , 7 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 10 ; "nicht rot": 7 10 ;

EreignisP
rot -> rot 12 145
rot -> nicht rot 63 290
nicht rot -> rot 63 290
nicht rot -> nicht rot 14 29

Einzel-Wahrscheinlichkeiten: rot: 3 10 ; nicht rot: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 12 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 145 = 12 145


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 7 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 9 38
1 -> 2 3 38
1 -> 3 7 38
2 -> 1 3 38
2 -> 2 3 190
2 -> 3 21 380
3 -> 1 7 38
3 -> 2 21 380
3 -> 3 21 190

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 3 20 ; 3: 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 3 38 )
'2'-'1' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 38 + 3 38 = 3 19


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 11 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'5'-'6' (P= 1 36 )
'6'-'5' (P= 1 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin war bei 4 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 4 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten.

Kombinatorik

Beispiel:

Eine 3-stellige Zahl soll gewürfelt werden. Dabei wird einfach 3 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden.

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.