Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 9 blaue, 5 grüne, 6 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 5 + 6 + 4=24

Hieraus ergibt sich für ...

blau: p= 9 24 = 3 8

grün: p= 5 24

gelb: p= 6 24 = 1 4

rot: p= 4 24 = 1 6

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Zahl'-'Zahl'-'Wappen' (P= 1 8 )
'Zahl'-'Wappen'-'Zahl' (P= 1 8 )
'Wappen'-'Zahl'-'Zahl' (P= 1 8 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 3 rote und 7 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 7 10 ; "nicht blau": 3 10 ;

EreignisP
blau -> blau -> blau 343 1000
blau -> blau -> nicht blau 147 1000
blau -> nicht blau -> blau 147 1000
blau -> nicht blau -> nicht blau 63 1000
nicht blau -> blau -> blau 147 1000
nicht blau -> blau -> nicht blau 63 1000
nicht blau -> nicht blau -> blau 63 1000
nicht blau -> nicht blau -> nicht blau 27 1000

Einzel-Wahrscheinlichkeiten: blau: 7 10 ; nicht blau: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau'-'nicht blau' (P= 147 1000 )
'blau'-'nicht blau'-'blau' (P= 147 1000 )
'nicht blau'-'blau'-'blau' (P= 147 1000 )
'blau'-'blau'-'blau' (P= 343 1000 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

147 1000 + 147 1000 + 147 1000 + 343 1000 = 98 125


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 5 vom Typ Herz, 5 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 23
Kreuz -> Herz 15 184
Kreuz -> Pik 15 184
Kreuz -> Karo 15 184
Herz -> Kreuz 15 184
Herz -> Herz 5 138
Herz -> Pik 25 552
Herz -> Karo 25 552
Pik -> Kreuz 15 184
Pik -> Herz 25 552
Pik -> Pik 5 138
Pik -> Karo 25 552
Karo -> Kreuz 15 184
Karo -> Herz 25 552
Karo -> Pik 25 552
Karo -> Karo 5 138

Einzel-Wahrscheinlichkeiten: Kreuz: 3 8 ; Herz: 5 24 ; Pik: 5 24 ; Karo: 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 23 )
'Herz'-'Herz' (P= 5 138 )
'Pik'-'Pik' (P= 5 138 )
'Karo'-'Karo' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 23 + 5 138 + 5 138 + 5 138 = 11 46


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 4 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 5 33
1 -> 2 5 33
1 -> 3 5 44
2 -> 1 5 33
2 -> 2 1 11
2 -> 3 1 11
3 -> 1 5 44
3 -> 2 1 11
3 -> 3 1 22

Einzel-Wahrscheinlichkeiten: 1: 5 12 ; 2: 1 3 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 5 33 )
'2'-'1' (P= 5 33 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 33 + 5 33 = 10 33


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 9 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 13 3 12 2 11 1 10 9 9
= 1 13 1 1 11 1 5 3 3
= 1 715

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 7 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 5 ist?

Lösung einblenden
EreignisP
1 -> 1 21 190
1 -> 2 49 380
1 -> 3 21 190
2 -> 1 49 380
2 -> 2 21 190
2 -> 3 21 190
3 -> 1 21 190
3 -> 2 21 190
3 -> 3 3 38

Einzel-Wahrscheinlichkeiten: 1: 7 20 ; 2: 7 20 ; 3: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 21 190 )
'3'-'2' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 + 21 190 = 21 95


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 8 rote, 8 blaue , 8 gelbe und 6 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 4 15 ; "nicht rot": 11 15 ;

EreignisP
rot -> rot 28 435
rot -> nicht rot 88 435
nicht rot -> rot 88 435
nicht rot -> nicht rot 77 145

Einzel-Wahrscheinlichkeiten: rot: 4 15 ; nicht rot: 11 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 28 435 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

28 435 = 28 435


Kombinatorik (ohne Binom.)

Beispiel:

Eine bestimmte Variable soll im Computer mit 12 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 12 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 12 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 212 = 4096 Möglichkeiten.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 3 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 7 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 3 = 18 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 3 ⋅ 7 = 126 Möglichkeiten ergeben.