Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er 2 27
3er-Zahl -> nicht 3er -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er -> nicht 3er 4 27
nicht 3er -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er -> 3er-Zahl -> nicht 3er 4 27
nicht 3er -> nicht 3er -> 3er-Zahl 4 27
nicht 3er -> nicht 3er -> nicht 3er 8 27

Einzel-Wahrscheinlichkeiten: 3er-Zahl: 1 3 ; nicht 3er: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3er-Zahl'-'3er-Zahl'-'nicht 3er' (P= 2 27 )
'3er-Zahl'-'nicht 3er'-'3er-Zahl' (P= 2 27 )
'nicht 3er'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 = 2 9


Ziehen mit Zurücklegen

Beispiel:

Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> höher 1 12
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> höher 1 12
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> höher 1 12
höher -> 1 1 12
höher -> 2 1 12
höher -> 3 1 12
höher -> höher 1 4

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; höher: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 1 36 )
'3'-'1' (P= 1 36 )
'2'-'3' (P= 1 36 )
'3'-'2' (P= 1 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 7 vom Typ Kreuz, 8 vom Typ Herz, 2 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 21 190
Kreuz -> Herz 14 95
Kreuz -> Pik 7 190
Kreuz -> Karo 21 380
Herz -> Kreuz 14 95
Herz -> Herz 14 95
Herz -> Pik 4 95
Herz -> Karo 6 95
Pik -> Kreuz 7 190
Pik -> Herz 4 95
Pik -> Pik 1 190
Pik -> Karo 3 190
Karo -> Kreuz 21 380
Karo -> Herz 6 95
Karo -> Pik 3 190
Karo -> Karo 3 190

Einzel-Wahrscheinlichkeiten: Kreuz: 7 20 ; Herz: 2 5 ; Pik: 1 10 ; Karo: 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 21 190 )
'Herz'-'Herz' (P= 14 95 )
'Pik'-'Pik' (P= 1 190 )
'Karo'-'Karo' (P= 3 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 + 14 95 + 1 190 + 3 190 = 53 190


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 10 vom Typ rot, 6 vom Typ blau und 4 vom Typ gelb. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 9 38
rot -> blau 3 19
rot -> gelb 2 19
blau -> rot 3 19
blau -> blau 3 38
blau -> gelb 6 95
gelb -> rot 2 19
gelb -> blau 6 95
gelb -> gelb 3 95

Einzel-Wahrscheinlichkeiten: rot: 1 2 ; blau: 3 10 ; gelb: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 9 38 )
'blau'-'blau' (P= 3 38 )
'gelb'-'gelb' (P= 3 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 38 + 3 38 + 3 95 = 33 95


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 5 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 16
1 -> 2 5 48
1 -> 3 1 12
2 -> 1 5 48
2 -> 2 25 144
2 -> 3 5 36
3 -> 1 1 12
3 -> 2 5 36
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: 1: 1 4 ; 2: 5 12 ; 3: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 5 36 )
'3'-'2' (P= 5 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 = 5 18


nur Summen

Beispiel:

In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 16
1 -> 2 1 8
1 -> 3 1 16
2 -> 1 1 8
2 -> 2 1 4
2 -> 3 1 8
3 -> 1 1 16
3 -> 2 1 8
3 -> 3 1 16

Einzel-Wahrscheinlichkeiten: 1: 1 4 ; 2: 1 2 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 1 8 )
'3'-'2' (P= 1 8 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 = 1 4


Kombinatorik (ohne Binom.)

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 19 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 3 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 19 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 18 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 17 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 19 ⋅ 18 ⋅ 17 = 5814 Möglichkeiten.

Kombinatorik

Beispiel:

Eine bestimmte Variable soll im Computer mit 11 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 11 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 11 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 211 = 2048 Möglichkeiten.