Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 5 blaue, 6 grüne, 7 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 6 + 7 + 6=24

Hieraus ergibt sich für ...

blau: p= 5 24

grün: p= 6 24 = 1 4

gelb: p= 7 24

rot: p= 6 24 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Zahl"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Zahl'-'Zahl'-'Wappen' (P= 1 8 )
'Zahl'-'Wappen'-'Zahl' (P= 1 8 )
'Wappen'-'Zahl'-'Zahl' (P= 1 8 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'6er' (P= 1 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 = 1 36


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'andere' (P= 3 70 )
'deutsch'-'andere'-'deutsch' (P= 3 70 )
'andere'-'deutsch'-'deutsch' (P= 3 70 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 70 + 3 70 + 3 70 = 9 70


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 3 Karten der Farbe Kreuz, 3 der Farbe Pik, 3 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Karo"?

Lösung einblenden

Da ja ausschließlich nach 'Karo' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Karo' und 'nicht Karo'

Einzel-Wahrscheinlichkeiten :"Karo": 1 4 ; "nicht Karo": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Karo' alle Möglichkeiten enthalten, außer eben 2 mal 'Karo'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Karo')=1- 1 22 = 21 22

EreignisP
Karo -> Karo 1 22
Karo -> nicht Karo 9 44
nicht Karo -> Karo 9 44
nicht Karo -> nicht Karo 6 11

Einzel-Wahrscheinlichkeiten: Karo: 1 4 ; nicht Karo: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Karo'-'nicht Karo' (P= 9 44 )
'nicht Karo'-'Karo' (P= 9 44 )
'nicht Karo'-'nicht Karo' (P= 6 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 44 + 9 44 + 6 11 = 21 22


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 5 1 4 3 3
= 1 5 1 2 3 3
= 1 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 7 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 3 40
1 -> 3 7 40
2 -> 1 3 40
2 -> 2 9 400
2 -> 3 21 400
3 -> 1 7 40
3 -> 2 21 400
3 -> 3 49 400

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 3 20 ; 3: 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 7 40 )
'3'-'1' (P= 7 40 )
'2'-'2' (P= 9 400 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 40 + 7 40 + 9 400 = 149 400


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '6er')=1- 125 216 = 91 216

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'nicht 6er'-'nicht 6er' (P= 25 216 )
'nicht 6er'-'6er'-'nicht 6er' (P= 25 216 )
'nicht 6er'-'nicht 6er'-'6er' (P= 25 216 )
'6er'-'6er'-'nicht 6er' (P= 5 216 )
'6er'-'nicht 6er'-'6er' (P= 5 216 )
'nicht 6er'-'6er'-'6er' (P= 5 216 )
'6er'-'6er'-'6er' (P= 1 216 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 + 5 216 + 5 216 + 5 216 + 1 216 = 91 216


Kombinatorik (ohne Binom.)

Beispiel:

Eine bestimmte Variable soll im Computer mit 9 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 9 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 9 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 29 = 512 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 = 43 = 64 Möglichkeiten.