Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 1 Schülerinnen und Schüler den katholischen Religionsunterricht, 7 den evangelischen, und 4 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 7 + 4=12
Hieraus ergibt sich für ...
rk: p=
ev: p=
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim | |
| prim -> nicht prim | |
| nicht prim -> prim | |
| nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: prim: ; nicht prim: ;
Die relevanten Pfade sind:
'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 11 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ; 5: ; 6: ;
Die relevanten Pfade sind:
'5'-'6' (P=)
'6'-'5' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> andere | |
| deutsch -> andere -> deutsch | |
| deutsch -> andere -> andere | |
| andere -> deutsch -> deutsch | |
| andere -> deutsch -> andere | |
| andere -> andere -> deutsch | |
| andere -> andere -> andere |
Einzel-Wahrscheinlichkeiten: deutsch: ; andere: ;
Die relevanten Pfade sind:
'andere'-'andere'-'andere' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 3 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
| Ereignis | P |
|---|---|
| rot -> rot -> rot | |
| rot -> rot -> blau | |
| rot -> blau -> rot | |
| rot -> blau -> blau | |
| blau -> rot -> rot | |
| blau -> rot -> blau | |
| blau -> blau -> rot | |
| blau -> blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:
'rot'-'rot'-'blau' (P=)
'rot'-'blau'-'rot' (P=)
'blau'-'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: 7: ; 8: ; 9: ;
Die relevanten Pfade sind:
'8'-'9' (P=)
'9'-'8' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 2 rote und 11 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Kombinatorik (ohne Binom.)
Beispiel:
Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 4 Hosen entscheiden. Für die Füße stehen ihr 5 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?
Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 4 = 12 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 5 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 4 ⋅ 5 = 60 Möglichkeiten ergeben.
Kombinatorik
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 9 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 5 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 9 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 9 ⋅ 4 = 36 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 5 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 9 ⋅ 4 ⋅ 5 = 180 Möglichkeiten ergeben.
