Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'keine_6'-'keine_6' (P= 25 216 )
'keine_6'-'6er'-'keine_6' (P= 25 216 )
'keine_6'-'keine_6'-'6er' (P= 25 216 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 = 25 72


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '6er')=1- 1 36 = 35 36

EreignisP
6er -> 6er 1 36
6er -> nicht 6er 5 36
nicht 6er -> 6er 5 36
nicht 6er -> nicht 6er 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'nicht 6er' (P= 5 36 )
'nicht 6er'-'6er' (P= 5 36 )
'nicht 6er'-'nicht 6er' (P= 25 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 25 36 = 35 36


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 8 Schüler mit sprachlichem Profil, 3 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 7 24 ; "nicht NWT": 17 24 ;

EreignisP
NWT -> NWT 7 92
NWT -> nicht NWT 119 552
nicht NWT -> NWT 119 552
nicht NWT -> nicht NWT 34 69

Einzel-Wahrscheinlichkeiten: NWT: 7 24 ; nicht NWT: 17 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'NWT' (P= 7 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 92 = 7 92


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 3 ; "nicht 9": 2 3 ;

EreignisP
9 -> 9 1 11
9 -> nicht 9 8 33
nicht 9 -> 9 8 33
nicht 9 -> nicht 9 14 33

Einzel-Wahrscheinlichkeiten: 9: 1 3 ; nicht 9: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 = 1 11


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 10 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 13 10 12
= 1 13 10 4
= 5 26

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 1 15
7 -> 8 2 15
7 -> 9 2 15
8 -> 7 2 15
8 -> 8 1 15
8 -> 9 2 15
9 -> 7 2 15
9 -> 8 2 15
9 -> 9 1 15

Einzel-Wahrscheinlichkeiten: 7: 1 3 ; 8: 1 3 ; 9: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 2 15 )
'9'-'8' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 = 4 15


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 4 rote, 4 blaue , 4 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 4 15 ; "nicht rot": 11 15 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 2 35 = 33 35

EreignisP
rot -> rot 2 35
rot -> nicht rot 22 105
nicht rot -> rot 22 105
nicht rot -> nicht rot 11 21

Einzel-Wahrscheinlichkeiten: rot: 4 15 ; nicht rot: 11 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 22 105 )
'nicht rot'-'rot' (P= 22 105 )
'nicht rot'-'nicht rot' (P= 11 21 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

22 105 + 22 105 + 11 21 = 33 35


Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 6 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 6 = 54 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Petra hat sich ein 8-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 8 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.