Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 4 Asse, 7 Könige, 10 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 7 + 10 + 3=24

Hieraus ergibt sich für ...

Ass: p= 4 24 = 1 6

König: p= 7 24

Dame: p= 10 24 = 5 12

Bube: p= 3 24 = 1 8

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 2 ; "nicht rot": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 1 4 = 3 4

EreignisP
rot -> rot 1 4
rot -> nicht rot 1 4
nicht rot -> rot 1 4
nicht rot -> nicht rot 1 4

Einzel-Wahrscheinlichkeiten: rot: 1 2 ; nicht rot: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 1 4 )
'nicht rot'-'rot' (P= 1 4 )
'rot'-'rot' (P= 1 4 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 + 1 4 = 3 4


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Teiler')=1- 1 27 = 26 27

EreignisP
Teiler -> Teiler -> Teiler 8 27
Teiler -> Teiler -> nicht Teiler 4 27
Teiler -> nicht Teiler -> Teiler 4 27
Teiler -> nicht Teiler -> nicht Teiler 2 27
nicht Teiler -> Teiler -> Teiler 4 27
nicht Teiler -> Teiler -> nicht Teiler 2 27
nicht Teiler -> nicht Teiler -> Teiler 2 27
nicht Teiler -> nicht Teiler -> nicht Teiler 1 27

Einzel-Wahrscheinlichkeiten: Teiler: 2 3 ; nicht Teiler: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Teiler'-'nicht Teiler'-'nicht Teiler' (P= 2 27 )
'nicht Teiler'-'Teiler'-'nicht Teiler' (P= 2 27 )
'nicht Teiler'-'nicht Teiler'-'Teiler' (P= 2 27 )
'Teiler'-'Teiler'-'nicht Teiler' (P= 4 27 )
'Teiler'-'nicht Teiler'-'Teiler' (P= 4 27 )
'nicht Teiler'-'Teiler'-'Teiler' (P= 4 27 )
'Teiler'-'Teiler'-'Teiler' (P= 8 27 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 4 27 + 4 27 + 4 27 + 8 27 = 26 27


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 3 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 140 = 1 140


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?

Lösung einblenden
EreignisP
7 -> 7 2 15
7 -> 8 8 45
7 -> 9 4 45
8 -> 7 8 45
8 -> 8 2 15
8 -> 9 4 45
9 -> 7 4 45
9 -> 8 4 45
9 -> 9 1 45

Einzel-Wahrscheinlichkeiten: 7: 2 5 ; 8: 2 5 ; 9: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'8' (P= 8 45 )
'8'-'7' (P= 8 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 45 + 8 45 = 16 45


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 14 2 13 1 12 11 11
= 1 7 1 13 1 4 11 11
= 1 364

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 5 22
1 -> 2 3 22
1 -> 3 3 22
2 -> 1 3 22
2 -> 2 1 22
2 -> 3 3 44
3 -> 1 3 22
3 -> 2 3 44
3 -> 3 1 22

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 3 22 )
'2'-'1' (P= 3 22 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 22 + 3 22 = 3 11


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 2 15
7 -> 8 4 45
7 -> 9 8 45
8 -> 7 4 45
8 -> 8 1 45
8 -> 9 4 45
9 -> 7 8 45
9 -> 8 4 45
9 -> 9 2 15

Einzel-Wahrscheinlichkeiten: 7: 2 5 ; 8: 1 5 ; 9: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 4 45 )
'9'-'8' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


Kombinatorik (ohne Binom.)

Beispiel:

Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 4 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 = 44 = 256 Möglichkeiten.