Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 4 Schülerinnen und Schüler den katholischen Religionsunterricht, 5 den evangelischen, und 3 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 5 + 3=12

Hieraus ergibt sich für ...

rk: p= 4 12 = 1 3

ev: p= 5 12

Eth: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal Zahl"?

Lösung einblenden

Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'

Einzel-Wahrscheinlichkeiten :"Zahl": 1 2 ; "nicht Zahl": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Zahl' alle Möglichkeiten enthalten, außer eben 3 mal 'Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'Zahl')=1- 1 8 = 7 8

EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> nicht Zahl 1 8
Zahl -> nicht Zahl -> Zahl 1 8
Zahl -> nicht Zahl -> nicht Zahl 1 8
nicht Zahl -> Zahl -> Zahl 1 8
nicht Zahl -> Zahl -> nicht Zahl 1 8
nicht Zahl -> nicht Zahl -> Zahl 1 8
nicht Zahl -> nicht Zahl -> nicht Zahl 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; nicht Zahl: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
'Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
'nicht Zahl'-'Zahl'-'Zahl' (P= 1 8 )
'Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )
'nicht Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
'nicht Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
'nicht Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 7 10 ; "nicht rot": 3 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 27 1000 = 973 1000

EreignisP
rot -> rot -> rot 343 1000
rot -> rot -> nicht rot 147 1000
rot -> nicht rot -> rot 147 1000
rot -> nicht rot -> nicht rot 63 1000
nicht rot -> rot -> rot 147 1000
nicht rot -> rot -> nicht rot 63 1000
nicht rot -> nicht rot -> rot 63 1000
nicht rot -> nicht rot -> nicht rot 27 1000

Einzel-Wahrscheinlichkeiten: rot: 7 10 ; nicht rot: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot'-'nicht rot' (P= 63 1000 )
'nicht rot'-'rot'-'nicht rot' (P= 63 1000 )
'nicht rot'-'nicht rot'-'rot' (P= 63 1000 )
'rot'-'rot'-'nicht rot' (P= 147 1000 )
'rot'-'nicht rot'-'rot' (P= 147 1000 )
'nicht rot'-'rot'-'rot' (P= 147 1000 )
'rot'-'rot'-'rot' (P= 343 1000 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

63 1000 + 63 1000 + 63 1000 + 147 1000 + 147 1000 + 147 1000 + 343 1000 = 973 1000


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 3 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 3 10 ; "nicht Mädchen": 7 10 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 1 120
Mädchen -> Mädchen -> nicht Mädchen 7 120
Mädchen -> nicht Mädchen -> Mädchen 7 120
Mädchen -> nicht Mädchen -> nicht Mädchen 7 40
nicht Mädchen -> Mädchen -> Mädchen 7 120
nicht Mädchen -> Mädchen -> nicht Mädchen 7 40
nicht Mädchen -> nicht Mädchen -> Mädchen 7 40
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 7 24

Einzel-Wahrscheinlichkeiten: Mädchen: 3 10 ; nicht Mädchen: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 120 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 120 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 7 120 )
'Mädchen'-'Mädchen'-'Mädchen' (P= 1 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 120 + 7 120 + 7 120 + 1 120 = 11 60


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 4 Kugeln mit einer Eins beschriftet, 4 Kugeln mit einer Zwei, 3 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 2 35
1 -> 2 8 105
1 -> 3 2 35
1 -> 4 8 105
2 -> 1 8 105
2 -> 2 2 35
2 -> 3 2 35
2 -> 4 8 105
3 -> 1 2 35
3 -> 2 2 35
3 -> 3 1 35
3 -> 4 2 35
4 -> 1 8 105
4 -> 2 8 105
4 -> 3 2 35
4 -> 4 2 35

Einzel-Wahrscheinlichkeiten: 1: 4 15 ; 2: 4 15 ; 3: 1 5 ; 4: 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 2 35 )
'4'-'3' (P= 2 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 35 + 2 35 = 4 35


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 2 26 24 25
= 3 9 2 13 4 25
= 8 975

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'

Einzel-Wahrscheinlichkeiten :"15": 2 27 ; "nicht 15": 25 27 ;

EreignisP
15 -> 15 1 351
15 -> nicht 15 25 351
nicht 15 -> 15 25 351
nicht 15 -> nicht 15 100 117

Einzel-Wahrscheinlichkeiten: 15: 2 27 ; nicht 15: 25 27 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'15'-'15' (P= 1 351 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 351 = 1 351


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht prim'-'nicht prim'-'nicht prim' (P= 1 8 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 = 1 8


Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 8 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 8 = 72 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 6 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 6 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 6 = 36 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 6 ⋅ 8 = 288 Möglichkeiten ergeben.