Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einem Kartenstapel sind 4 Asse, 7 Könige, 10 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 7 + 10 + 3=24
Hieraus ergibt sich für ...
Ass: p= =
König: p=
Dame: p= =
Bube: p= =
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'rot')=1- =
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:
'rot'-'nicht rot' (P=)
'nicht rot'-'rot' (P=)
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Teiler')=1- =
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> nicht Teiler | |
| Teiler -> nicht Teiler -> Teiler | |
| Teiler -> nicht Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler -> Teiler | |
| nicht Teiler -> Teiler -> nicht Teiler | |
| nicht Teiler -> nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; nicht Teiler: ;
Die relevanten Pfade sind:
'Teiler'-'nicht Teiler'-'nicht Teiler' (P=)
'nicht Teiler'-'Teiler'-'nicht Teiler' (P=)
'nicht Teiler'-'nicht Teiler'-'Teiler' (P=)
'Teiler'-'Teiler'-'nicht Teiler' (P=)
'Teiler'-'nicht Teiler'-'Teiler' (P=)
'nicht Teiler'-'Teiler'-'Teiler' (P=)
'Teiler'-'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
ohne Zurücklegen (einfach)
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 3 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> andere | |
| deutsch -> andere -> deutsch | |
| deutsch -> andere -> andere | |
| andere -> deutsch -> deutsch | |
| andere -> deutsch -> andere | |
| andere -> andere -> deutsch | |
| andere -> andere -> andere |
Einzel-Wahrscheinlichkeiten: deutsch: ; andere: ;
Die relevanten Pfade sind:
'deutsch'-'deutsch'-'deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: 7: ; 8: ; 9: ;
Die relevanten Pfade sind:
'7'-'8' (P=)
'8'-'7' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:
'1'-'2' (P=)
'2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: 7: ; 8: ; 9: ;
Die relevanten Pfade sind:
'8'-'9' (P=)
'9'-'8' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.
Kombinatorik
Beispiel:
Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 4 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 4-fach verzweigt.
Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 = 44 = 256 Möglichkeiten.
