Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Halbkreis => p=
grün: Man erkennt einen Viertelkreis => p=
gelb: Man erkennt einen Viertelkreis => p=
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal '6er')=1- =
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> nicht 6er | |
| nicht 6er -> 6er | |
| nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: 6er: ; nicht 6er: ;
Die relevanten Pfade sind:
'6er'-'nicht 6er' (P=)
'nicht 6er'-'6er' (P=)
'nicht 6er'-'nicht 6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Teiler')=1- =
| Ereignis | P |
|---|---|
| Teiler -> Teiler | |
| Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; nicht Teiler: ;
Die relevanten Pfade sind:
'Teiler'-'nicht Teiler' (P=)
'nicht Teiler'-'Teiler' (P=)
'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'
Einzel-Wahrscheinlichkeiten :"deutsch": ; "nicht deutsch": ;
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> nicht deutsch | |
| deutsch -> nicht deutsch -> deutsch | |
| deutsch -> nicht deutsch -> nicht deutsch | |
| nicht deutsch -> deutsch -> deutsch | |
| nicht deutsch -> deutsch -> nicht deutsch | |
| nicht deutsch -> nicht deutsch -> deutsch | |
| nicht deutsch -> nicht deutsch -> nicht deutsch |
Einzel-Wahrscheinlichkeiten: deutsch: ; nicht deutsch: ;
Die relevanten Pfade sind:
'deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 2 rote, 2 blaue , 6 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?
Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'
Einzel-Wahrscheinlichkeiten :"schwarz": ; "nicht schwarz": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'schwarz')=1- =
| Ereignis | P |
|---|---|
| schwarz -> schwarz | |
| schwarz -> nicht schwarz | |
| nicht schwarz -> schwarz | |
| nicht schwarz -> nicht schwarz |
Einzel-Wahrscheinlichkeiten: schwarz: ; nicht schwarz: ;
Die relevanten Pfade sind:
'schwarz'-'nicht schwarz' (P=)
'nicht schwarz'-'schwarz' (P=)
'schwarz'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 3 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 4 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 5 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:
'2'-'3' (P=)
'3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 4 Asse, 4 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal Dame"?
| Ereignis | P |
|---|---|
| Ass -> Ass | |
| Ass -> König | |
| Ass -> Dame | |
| König -> Ass | |
| König -> König | |
| König -> Dame | |
| Dame -> Ass | |
| Dame -> König | |
| Dame -> Dame |
Einzel-Wahrscheinlichkeiten: Ass: ; König: ; Dame: ;
Die relevanten Pfade sind:
'Ass'-'Dame' (P=)
'Dame'-'Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Kombinatorik (ohne Binom.)
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 9 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 5 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 9 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 9 ⋅ 4 = 36 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 5 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 9 ⋅ 4 ⋅ 5 = 180 Möglichkeiten ergeben.
Kombinatorik
Beispiel:
Petra hat sich ein 5-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 5 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten.
