Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '6er')=1- 1 36 = 35 36

EreignisP
6er -> 6er 1 36
6er -> nicht 6er 5 36
nicht 6er -> 6er 5 36
nicht 6er -> nicht 6er 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'6er'-'nicht 6er' (P= 5 36 )
'nicht 6er'-'6er' (P= 5 36 )
'nicht 6er'-'nicht 6er' (P= 25 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 25 36 = 35 36


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine Primzahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach 'prim' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'prim' und 'nicht prim'

Einzel-Wahrscheinlichkeiten :"prim": 1 2 ; "nicht prim": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal prim' alle Möglichkeiten enthalten, außer eben 2 mal 'prim'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'prim')=1- 1 4 = 3 4

EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'prim'-'nicht prim' (P= 1 4 )
'nicht prim'-'prim' (P= 1 4 )
'nicht prim'-'nicht prim' (P= 1 4 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 + 1 4 = 3 4


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 9 rote, 4 blaue , 8 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 6 ; "nicht blau": 5 6 ;

EreignisP
blau -> blau 1 46
blau -> nicht blau 10 69
nicht blau -> blau 10 69
nicht blau -> nicht blau 95 138

Einzel-Wahrscheinlichkeiten: blau: 1 6 ; nicht blau: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'nicht blau' (P= 10 69 )
'nicht blau'-'blau' (P= 10 69 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

10 69 + 10 69 = 20 69


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 7 rote, 7 blaue , 5 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal gelb"?

Lösung einblenden
EreignisP
rot -> rot 7 92
rot -> blau 49 552
rot -> gelb 35 552
rot -> schwarz 35 552
blau -> rot 49 552
blau -> blau 7 92
blau -> gelb 35 552
blau -> schwarz 35 552
gelb -> rot 35 552
gelb -> blau 35 552
gelb -> gelb 5 138
gelb -> schwarz 25 552
schwarz -> rot 35 552
schwarz -> blau 35 552
schwarz -> gelb 25 552
schwarz -> schwarz 5 138

Einzel-Wahrscheinlichkeiten: rot: 7 24 ; blau: 7 24 ; gelb: 5 24 ; schwarz: 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'gelb' (P= 35 552 )
'gelb'-'rot' (P= 35 552 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

35 552 + 35 552 = 35 276


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 92
13 -> 14 25 138
13 -> 15 5 69
14 -> 13 25 138
14 -> 14 15 92
14 -> 15 5 69
15 -> 13 5 69
15 -> 14 5 69
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: 13: 5 12 ; 14: 5 12 ; 15: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'14'-'15' (P= 5 69 )
'15'-'14' (P= 5 69 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 69 + 5 69 = 10 69


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal Dame"?

Lösung einblenden
EreignisP
Ass -> Ass 3 14
Ass -> König 1 7
Ass -> Dame 1 7
König -> Ass 1 7
König -> König 1 28
König -> Dame 1 14
Dame -> Ass 1 7
Dame -> König 1 14
Dame -> Dame 1 28

Einzel-Wahrscheinlichkeiten: Ass: 1 2 ; König: 1 4 ; Dame: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Dame' (P= 1 7 )
'Dame'-'Ass' (P= 1 7 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 = 2 7


Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 5 Hosen entscheiden. Für die Füße stehen ihr 7 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 5 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 5 = 15 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 5 ⋅ 7 = 105 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 21 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 4 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 21 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 20 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 19 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 21 ⋅ 20 ⋅ 19 ⋅ 18 = 143640 Möglichkeiten.