Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 6 Asse, 5 Könige, 4 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 5 + 4 + 5=20

Hieraus ergibt sich für ...

Ass: p= 6 20 = 3 10

König: p= 5 20 = 1 4

Dame: p= 4 20 = 1 5

Bube: p= 5 20 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 8 ; "nicht rot": 5 8 ;

EreignisP
rot -> rot 9 64
rot -> nicht rot 15 64
nicht rot -> rot 15 64
nicht rot -> nicht rot 25 64

Einzel-Wahrscheinlichkeiten: rot: 3 8 ; nicht rot: 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 9 64 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 64 = 9 64


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 3 ; "nicht rot": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 1 27 = 26 27

EreignisP
rot -> rot -> rot 8 27
rot -> rot -> nicht rot 4 27
rot -> nicht rot -> rot 4 27
rot -> nicht rot -> nicht rot 2 27
nicht rot -> rot -> rot 4 27
nicht rot -> rot -> nicht rot 2 27
nicht rot -> nicht rot -> rot 2 27
nicht rot -> nicht rot -> nicht rot 1 27

Einzel-Wahrscheinlichkeiten: rot: 2 3 ; nicht rot: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot'-'nicht rot' (P= 2 27 )
'nicht rot'-'rot'-'nicht rot' (P= 2 27 )
'nicht rot'-'nicht rot'-'rot' (P= 2 27 )
'rot'-'rot'-'nicht rot' (P= 4 27 )
'rot'-'nicht rot'-'rot' (P= 4 27 )
'nicht rot'-'rot'-'rot' (P= 4 27 )
'rot'-'rot'-'rot' (P= 8 27 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 4 27 + 4 27 + 4 27 + 8 27 = 26 27


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 8 Schüler mit sprachlichem Profil, 5 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 7 24 ; "nicht NWT": 17 24 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'NWT')=1- 34 69 = 35 69

EreignisP
NWT -> NWT 7 92
NWT -> nicht NWT 119 552
nicht NWT -> NWT 119 552
nicht NWT -> nicht NWT 34 69

Einzel-Wahrscheinlichkeiten: NWT: 7 24 ; nicht NWT: 17 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 119 552 )
'nicht NWT'-'NWT' (P= 119 552 )
'NWT'-'NWT' (P= 7 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

119 552 + 119 552 + 7 92 = 35 69


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 10 Karten der Farbe Kreuz, 8 der Farbe Pik, 9 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Karo"?

Lösung einblenden

Da ja ausschließlich nach 'Karo' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Karo' und 'nicht Karo'

Einzel-Wahrscheinlichkeiten :"Karo": 1 10 ; "nicht Karo": 9 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Karo' alle Möglichkeiten enthalten, außer eben kein 'Karo' bzw. 0 mal 'Karo'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Karo')=1- 117 145 = 28 145

EreignisP
Karo -> Karo 1 145
Karo -> nicht Karo 27 290
nicht Karo -> Karo 27 290
nicht Karo -> nicht Karo 117 145

Einzel-Wahrscheinlichkeiten: Karo: 1 10 ; nicht Karo: 9 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Karo'-'nicht Karo' (P= 27 290 )
'nicht Karo'-'Karo' (P= 27 290 )
'Karo'-'Karo' (P= 1 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 290 + 27 290 + 1 145 = 28 145


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 24 26
= 3 9 8 26
= 4 39

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 9 100
1 -> 2 3 20
1 -> 3 3 50
2 -> 1 3 20
2 -> 2 1 4
2 -> 3 1 10
3 -> 1 3 50
3 -> 2 1 10
3 -> 3 1 25

Einzel-Wahrscheinlichkeiten: 1: 3 10 ; 2: 1 2 ; 3: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 3 20 )
'2'-'1' (P= 3 20 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 20 + 3 20 = 3 10


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 2 15
rot -> blau 4 15
blau -> rot 4 15
blau -> blau 1 3

Einzel-Wahrscheinlichkeiten: rot: 2 5 ; blau: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau' (P= 1 3 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 3 = 1 3


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin hat für die 12 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 12 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 12 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 11 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 10 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 12 ⋅ 11 ⋅ 10 = 1320 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 5 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 = 45 = 1024 Möglichkeiten.