Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 92 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 76 erkennen und dumm anlabern?

Lösung einblenden
pP(X≤k)
......
0.720.9935
0.730.9887
0.740.9809
0.750.9687
0.760.9502
0.770.9234
0.780.8859
......

Es muss gelten: Pp92 (X76) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(92,X,76) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.77 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Eine Fluggesellschaft verkauft 69 Flugtickets für einen bestimmten Flug. Das sind 62 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?

Lösung einblenden
pP(X≥62)=1-P(X≤61)
......
0.890.5065
0.90.6146
0.910.7201
0.920.8149
0.930.8915
0.940.9459
......

Es muss gelten: Pp69 (X62) =0.9 (oder mehr)

oder eben: 1- Pp69 (X61) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(69,X,61) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.94 die gesuchte Wahrscheinlichkeit über 0.9 ist.

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 91% und im Stehen 85%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.

P0.915 (X=4) = ( 5 4 ) 0.914 0.091 ≈ 0.3086
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.

P0.855 (X=5) = ( 5 5 ) 0.855 0.150 ≈ 0.4437
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3086 ⋅ 0.4437 = 0.13692582

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.

P0.915 (X=5) = ( 5 5 ) 0.915 0.090 ≈ 0.624
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.

P0.855 (X=4) = ( 5 4 ) 0.854 0.151 ≈ 0.3915
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.624 ⋅ 0.3915 = 0.244296

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.

P0.915 (X=5) = ( 5 5 ) 0.915 0.090 ≈ 0.624
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.85.

P0.855 (X=5) = ( 5 5 ) 0.855 0.150 ≈ 0.4437
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.624 ⋅ 0.4437 = 0.2768688


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1369 + 0.2443 + 0.2769 = 0.6581

feste Reihenfolge im Binomialkontext

Beispiel:

9 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 5 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 5 ) ( 1 6 ) 5 ( 5 6 ) 4

Dabei gibt ja ( 1 6 ) 5 ( 5 6 ) 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 4 Nicht-Treffern und ( 9 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXOOOO

OXXXXXOOO

OOXXXXXOO

OOOXXXXXO

OOOOXXXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ ( 1 6 ) 5 ( 5 6 ) 4 ≈ 0.0003

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 8% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.08.

Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.08, also P0.0850 (X4)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsvariable X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.08.

P0.0850 (X4) = P0.0850 (X=0) + P0.0850 (X=1) + P0.0850 (X=2) +... + P0.0850 (X=4) = 0.62895013881712 ≈ 0.629
(TI-Befehl: binomcdf(50,0.08,4))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.629) und 'nicht ok'(p=0.371).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0.395641
kiste ok -> nicht ok0.233359
nicht ok -> kiste ok0.233359
nicht ok -> nicht ok0.137641

Einzel-Wahrscheinlichkeiten: kiste ok: 0.629; nicht ok: 0.371;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'kiste ok'-'kiste ok' (P=0.395641)


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0.395641 = 0.395641


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 20 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 3 richtig errät?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4 Durchgänge:

Die Zufallsvariable X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.254 (X=0) ≈ 0.3164.

Analog betrachten wir nun die restlichen 16 Durchgänge:

Die Zufallsvariable Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=16 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2516 (Y3) ≈ 0.405.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.254 (X=0) P0.2516 (Y3) = 0.3164 ⋅ 0.405 ≈ 0.1281