Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 58]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 59]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 60]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Warning (2): A non-numeric value encountered [APP/Lib/mathebattle/aufgaben/mittelstufe/stochastik/zufallsgroesse_elementar_aufgabe.php, line 61]
Pestalozzi Gymnasium Biberach EduRandomtasks

Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl der Würfe, bei denen "Zahl" erscheint. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe' sind folgende Werte möglich:

Zufallsgröße XX = 0
zugehörige
Ereignisse
rot - rot
rot - blau
blau - rot
blau - blau

Zufallsgröße WS-Verteilung

Beispiel:

Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl, der Würfe bei denen "Zahl" erscheint. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl von Zahl-Würfen' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ereignisse
0 - 0 - 00 - 0 - 1
0 - 1 - 0
1 - 0 - 0
0 - 1 - 1
1 - 0 - 1
1 - 1 - 0
1 - 1 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 2 1 2 1 2 1 2 1 2
+ 1 2 1 2 1 2
+ 1 2 1 2 1 2
1 2 1 2 1 2
+ 1 2 1 2 1 2
+ 1 2 1 2 1 2
1 2 1 2 1 2
  = 1 8 1 8 + 1 8 + 1 8 1 8 + 1 8 + 1 8 1 8



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 1 8 3 8 3 8 1 8

Zufallsgröße (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 4, vier Karten mit dem Wert 5 und vier 8er.
Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Ereignisse
4 - 4
5 - 5
8 - 8
4 - 5
5 - 4
5 - 8
8 - 5
4 - 8
8 - 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 5 1 9
+ 2 5 3 9
+ 2 5 3 9
1 5 4 9
+ 2 5 2 9
2 5 4 9
+ 2 5 4 9
1 5 4 9
+ 2 5 2 9
  = 1 45 + 2 15 + 2 15 4 45 + 4 45 8 45 + 8 45 4 45 + 4 45



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0134
P(X=k) 13 45 8 45 16 45 8 45

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 12 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint.
Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 6 7 12 91 1 91

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 24 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 3, 4 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?
Zufallsgröße X678111216
P(X=k) 9 64 ???? 1 16

Lösung einblenden

Für X=6 gibt es nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p1 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=6) = 9 64 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 9 64 und somit p1 = 3 8 .

Ebenso gibt es für X=16 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.

Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=16) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=16) = 1 16 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 16 und somit p3 = 1 4 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 3 8 - 1 4 = 8 8 - 3 8 - 2 8 = 3 8

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 24 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 24

Somit erhalten wir:

n3 = 3 8 ⋅ 24 = 9

n4 = 3 8 ⋅ 24 = 9

n8 = 1 4 ⋅ 24 = 6

Erwartungswerte

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Wie viele Punkte kann man bei dem abgebildeten Glücksrad erwarten?

Lösung einblenden

Die Zufallsgröße X beschreibt die Punktezahl auf einem Sektor des Glücksrads.

Erwartungswert der Zufallsgröße X

Ereignis 3 10 16 75
Zufallsgröße xi 3 10 16 75
P(X=xi) 4 8 2 8 1 8 1 8
xi ⋅ P(X=xi) 3 2 5 2 2 75 8

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 3⋅ 4 8 + 10⋅ 2 8 + 16⋅ 1 8 + 75⋅ 1 8

= 3 2 + 5 2 + 2+ 75 8
= 12 8 + 20 8 + 16 8 + 75 8
= 123 8

15.38

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 8 Kugeln, die mit 2€ beschriftet sind, 8 Kugeln, die mit 16€ und 6 Kugeln, die mit 24€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 3 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 15,36€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 16 24 ?
Zufallsgröße xi 2 16 24 x
Zufallsgröße yi (Gewinn) -13.36 0.64 8.64 x-15.36
P(X=xi) 8 25 8 25 6 25 3 25
xi ⋅ P(X=xi) 16 25 128 25 144 25 3 25 ⋅ x
yi ⋅ P(Y=yi) - 106.88 25 5.12 25 51.84 25 3 25 ⋅(x-15.36)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 15.36

8 25 · 2 + 8 25 · 16 + 6 25 · 24 + 3 25 x = 15.36

16 25 + 128 25 + 144 25 + 3 25 x = 15.36

16 25 + 128 25 + 144 25 + 3 25 x = 15,36
3 25 x + 288 25 = 15,36 |⋅ 25
25( 3 25 x + 288 25 ) = 384
3x +288 = 384 | -288
3x = 96 |:3
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

8 25 · ( -13,36 ) + 8 25 · 0,64 + 6 25 · 8,64 + 3 25 ( x -15,36 ) = 0

- 106.88 25 + 5.12 25 + 51.84 25 + 3 25 x -1,8432 = 0

-4,2752 +0,2048 +2,0736 + 3 25 x -1,8432 = 0
3 25 x -3,84 = 0 |⋅ 25
25( 3 25 x -3,84 ) = 0
3x -96 = 0 | +96
3x = 96 |:3
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
• Das Spiel mit dem Glücksrad muss fair sein
• Der Einsatz soll 2€ betragen
• Der minimale Auszahlungsbetrag soll 1€ sein
• Der maximale Auszahlungsbetrag soll soll 9€ sein
• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 9
Y Gewinn (Ausz. - Einsatz) -1 7
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 9
Y Gewinn (Ausz. - Einsatz) -1 7
P(X) = P(Y) 1 2 1 14
Y ⋅ P(Y) - 1 2 1 2

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 1 14 = 4 7
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 4 7 = 3 7 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 9
Y Gewinn (Ausz. - Einsatz) -1 7
P(X) = P(Y) 1 2 3 14 3 14 1 14
Y ⋅ P(Y) - 1 2 1 2

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 1.5 2.5 9
Y Gewinn (Ausz. - Einsatz) -1 -0.5 0.5 7
P(X) = P(Y) 1 2 3 14 3 14 1 14
Winkel 180 77.14 77.14 25.71
Y ⋅ P(Y) - 1 2 - 3 28 3 28 1 2

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -1⋅ 1 2 + -0.5⋅ 3 14 + 0.5⋅ 3 14 + 7⋅ 1 14

= - 1 2 - 3 28 + 3 28 + 1 2
= - 14 28 - 3 28 + 3 28 + 14 28
= 0 28
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 9 13

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 3 13

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 9 143

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 9 715

Die Wahrscheinlichkeit für ein 'Herz' im 5-ten Versuch st: 1 715

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 9 13 3 13 9 143 9 715 1 715
xi ⋅ P(X=xi) 9 13 6 13 27 143 36 715 1 143

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 9 13 + 2⋅ 3 13 + 3⋅ 9 143 + 4⋅ 9 715 + 5⋅ 1 715

= 9 13 + 6 13 + 27 143 + 36 715 + 1 143
= 495 715 + 330 715 + 135 715 + 36 715 + 5 715
= 1001 715
= 7 5

1.4

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 12 Mädchen und 10 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 1 7
Mädchen -> Mädchen -> Jungs 1 7
Mädchen -> Jungs -> Mädchen 1 7
Mädchen -> Jungs -> Jungs 9 77
Jungs -> Mädchen -> Mädchen 1 7
Jungs -> Mädchen -> Jungs 9 77
Jungs -> Jungs -> Mädchen 9 77
Jungs -> Jungs -> Jungs 6 77

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 6 77

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 9 77 + 9 77 + 9 77 = 27 77

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 1 7 + 1 7 + 1 7 = 3 7

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 1 7

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 6 77 27 77 3 7 1 7
xi ⋅ P(X=xi) 0 27 77 6 7 3 7

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 6 77 + 1⋅ 27 77 + 2⋅ 3 7 + 3⋅ 1 7

= 0+ 27 77 + 6 7 + 3 7
= 0 77 + 27 77 + 66 77 + 33 77
= 126 77
= 18 11

1.64

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 16€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 5€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 3€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 16 5 3
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 8 9 5 6 5 6

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 16⋅ 1 18 + 5⋅ 1 6 + 3⋅ 5 18

= 8 9 + 5 6 + 5 6
= 16 18 + 15 18 + 15 18
= 46 18
= 23 9

2.56