Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 1 beschriftet sind, zwei Kugeln, die mit der Zahl 4 beschriftet sind und vier Kugeln, die mit der Zahl 7 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.
Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Zahl und der kleineren Zahl der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 3X = 6
zugehörige
Ereignisse
1 - 1
4 - 4
7 - 7
1 - 4
4 - 1
4 - 7
7 - 4
1 - 7
7 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz der größeren Zahl minus der kleineren Zahl der beiden Glücksräder. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Ereignisse
1 - 1
2 - 2
3 - 3
1 - 2
2 - 1
2 - 3
3 - 2
1 - 3
3 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Wahrscheinlichkeit P(X)
5 8 5 8
+ 1 4 1 4
+ 1 8 1 8
5 8 1 4
+ 1 4 5 8
+ 1 4 1 8
+ 1 8 1 4
5 8 1 8
+ 1 8 5 8
  = 25 64 + 1 16 + 1 64 5 32 + 5 32 + 1 32 + 1 32 5 64 + 5 64



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X012
P(X=k) 15 32 3 8 5 32

Zufallsgröße (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch vier Karten mit dem Wert 4, vier Karten mit dem Wert 5 und vier 8er.
Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Werte der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 8X = 9X = 10X = 12X = 13X = 16
zugehörige
Ereignisse
4 - 44 - 5
5 - 4
5 - 54 - 8
8 - 4
5 - 8
8 - 5
8 - 8
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 8X = 9X = 10X = 12X = 13X = 16
zugehörige
Wahrscheinlichkeit P(X)
1 3 3 11 1 3 4 11
+ 1 3 4 11
1 3 3 11 1 3 4 11
+ 1 3 4 11
1 3 4 11
+ 1 3 4 11
1 3 3 11
  = 1 11 4 33 + 4 33 1 11 4 33 + 4 33 4 33 + 4 33 1 11



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X8910121316
P(X=k) 1 11 8 33 1 11 8 33 8 33 1 11

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint.
Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 11 15 22 105 22 455 11 1365 1 1365

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 15 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 6 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X4810121416
P(X=k) 1 25 ???? 1 25

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 1 25 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 25 und somit p1 = 1 5 .

Ebenso gibt es für X=16 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.

Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=16) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=16) = 1 25 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 25 und somit p3 = 1 5 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 5 - 1 5 = 5 5 - 1 5 - 1 5 = 3 5

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 15 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 15

Somit erhalten wir:

n2 = 1 5 ⋅ 15 = 3

n6 = 3 5 ⋅ 15 = 9

n8 = 1 5 ⋅ 15 = 3

Erwartungswerte

Beispiel:

Ein Spieler darf aus einer Urne mit 9 blauen, 3 roten, 7 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 8€. Bei rot erhält er 16€, bei grün erhält er 24€ und bei weiß erhält er 48€. Wieviel bringt ein Zug durchschnittlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis blau rot grün weiß
Zufallsgröße xi 8 16 24 48
P(X=xi) 9 24 3 24 7 24 5 24
xi ⋅ P(X=xi) 3 2 7 10

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 8⋅ 9 24 + 16⋅ 3 24 + 24⋅ 7 24 + 48⋅ 5 24

= 3+ 2+ 7+ 10
= 22

Einsatz für faires Spiel bestimmen

Beispiel:

Ein Spieler darf aus einer Urne mit 8 blauen, 3 roten, 8 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 6€. Bei rot erhält er 16€ und bei grün erhält er 9€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 12€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 6 16 9 x
Zufallsgröße yi (Gewinn) -6 4 -3 x-12
P(X=xi) 8 24 3 24 8 24 5 24
xi ⋅ P(X=xi) 2 2 3 5 24 ⋅ x
yi ⋅ P(Y=yi) -2 1 2 -1 5 24 ⋅(x-12)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 12

8 24 · 6 + 3 24 · 16 + 8 24 · 9 + 5 24 x = 12

2 +2 +3 + 5 24 x = 12

2 +2 +3 + 5 24 x = 12
5 24 x +7 = 12 |⋅ 24
24( 5 24 x +7 ) = 288
5x +168 = 288 | -168
5x = 120 |:5
x = 24

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

8 24 · ( -6 ) + 3 24 · 4 + 8 24 · ( -3 ) + 5 24 ( x -12 ) = 0

-2 + 1 2 -1 + 5 24 x - 5 2 = 0

-2 + 1 2 -1 + 5 24 x - 5 2 = 0
5 24 x -5 = 0 |⋅ 24
24( 5 24 x -5 ) = 0
5x -120 = 0 | +120
5x = 120 |:5
x = 24

In beiden Fällen ist also der gesuchte Betrag: 24

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
• Das Spiel mit dem Glücksrad muss fair sein
• Der Einsatz soll 5€ betragen
• Der minimale Auszahlungsbetrag soll 3€ sein
• Der maximale Auszahlungsbetrag soll soll 17€ sein
• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 17
Y Gewinn (Ausz. - Einsatz) -2 12
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 17
Y Gewinn (Ausz. - Einsatz) -2 12
P(X) = P(Y) 1 2 1 12
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 1 12 = 7 12
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 7 12 = 5 12 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 17
Y Gewinn (Ausz. - Einsatz) -2 12
P(X) = P(Y) 1 2 5 24 5 24 1 12
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 4 6 17
Y Gewinn (Ausz. - Einsatz) -2 -1 1 12
P(X) = P(Y) 1 2 5 24 5 24 1 12
Winkel 180 75 75 30
Y ⋅ P(Y) -1 - 5 24 5 24 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1⋅ 5 24 + 1⋅ 5 24 + 12⋅ 1 12

= -1 - 5 24 + 5 24 + 1
= - 24 24 - 5 24 + 5 24 + 24 24
= 0 24
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 10 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 10 13

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 5 26

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 5 143

Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st: 1 286

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 10 13 5 26 5 143 1 286
xi ⋅ P(X=xi) 10 13 5 13 15 143 2 143

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 10 13 + 2⋅ 5 26 + 3⋅ 5 143 + 4⋅ 1 286

= 10 13 + 5 13 + 15 143 + 2 143
= 182 143
= 14 11

1.27

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 8 blauen und 4 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 162€, bei 2 blauen bekommt er noch 18€, bei einer 6€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 14 55
blau -> blau -> rot 28 165
blau -> rot -> blau 28 165
blau -> rot -> rot 4 55
rot -> blau -> blau 28 165
rot -> blau -> rot 4 55
rot -> rot -> blau 4 55
rot -> rot -> rot 1 55

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 1 55

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 4 55 + 4 55 + 4 55 = 12 55

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 28 165 + 28 165 + 28 165 = 28 55

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 14 55

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 6 18 162
P(X=xi) 1 55 12 55 28 55 14 55
xi ⋅ P(X=xi) 0 72 55 504 55 2268 55

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 55 + 6⋅ 12 55 + 18⋅ 28 55 + 162⋅ 14 55

= 0+ 72 55 + 504 55 + 2268 55
= 0 55 + 72 55 + 504 55 + 2268 55
= 2844 55

51.71

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 8 Asse, 7 Könige, 7 Damen und 3 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 450, 2 Damen 100 und 2 Buben 90 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 7 75
As -> König 7 75
As -> Dame 7 75
As -> Bube 1 25
König -> As 7 75
König -> König 7 100
König -> Dame 49 600
König -> Bube 7 200
Dame -> As 7 75
Dame -> König 49 600
Dame -> Dame 7 100
Dame -> Bube 7 200
Bube -> As 1 25
Bube -> König 7 200
Bube -> Dame 7 200
Bube -> Bube 1 100

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 7 75

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 7 100

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 7 100

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 100

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 49 600 + 49 600 = 49 300

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 450 100 90 30
P(X=xi) 7 75 7 100 7 100 1 100 49 300
xi ⋅ P(X=xi) 140 3 63 2 7 9 10 49 10

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 7 75 + 450⋅ 7 100 + 100⋅ 7 100 + 90⋅ 1 100 + 30⋅ 49 300

= 140 3 + 63 2 + 7+ 9 10 + 49 10
= 1400 30 + 945 30 + 210 30 + 27 30 + 147 30
= 2729 30

90.97