Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz: Zahl des ersten Glücksrads - Zahl des zweiten Glücksrads. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:

Zufallsgröße XX = -2X = -1X = 0X = 1X = 2
zugehörige
Ereignisse
1 - 31 - 2
2 - 3
1 - 1
2 - 2
3 - 3
2 - 1
3 - 2
3 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz: Zahl des ersten Glücksrads - Zahl des zweiten Glücksrads. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:

Zufallsgröße XX = -2X = -1X = 0X = 1X = 2
zugehörige
Ereignisse
1 - 31 - 2
2 - 3
1 - 1
2 - 2
3 - 3
2 - 1
3 - 2
3 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = -2X = -1X = 0X = 1X = 2
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 8 1 2 3 8
+ 3 8 1 8
1 2 1 2
+ 3 8 3 8
+ 1 8 1 8
3 8 1 2
+ 1 8 3 8
1 8 1 2
  = 1 16 3 16 + 3 64 1 4 + 9 64 + 1 64 3 16 + 3 64 1 16



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X-2-1012
P(X=k) 1 16 15 64 13 32 15 64 1 16

Zufallsgröße (auch ohne zur.)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 1 beschriftet sind und sechs Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 10X = 18
zugehörige
Ereignisse
1 - 11 - 9
9 - 1
9 - 9
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 2X = 10X = 18
zugehörige
Wahrscheinlichkeit P(X)
2 5 3 9 2 5 6 9
+ 3 5 4 9
3 5 5 9
  = 2 15 4 15 + 4 15 1 3



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X21018
P(X=k) 2 15 8 15 1 3

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.
Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 15 17 15 136 1 136

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 24 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 6 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X4810121416
P(X=k) 9 64 ???? 1 16

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 9 64 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 9 64 und somit p1 = 3 8 .

Ebenso gibt es für X=16 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.

Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=16) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=16) = 1 16 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 16 und somit p3 = 1 4 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 3 8 - 1 4 = 8 8 - 3 8 - 2 8 = 3 8

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 24 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 24

Somit erhalten wir:

n2 = 3 8 ⋅ 24 = 9

n6 = 3 8 ⋅ 24 = 9

n8 = 1 4 ⋅ 24 = 6

Erwartungswerte

Beispiel:

Ein Spieler darf aus einer Urne mit 8 blauen, 7 roten, 3 grünen und 6 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 6€. Bei rot erhält er 24€, bei grün erhält er 40€ und bei weiß erhält er 8€. Wieviel bringt ein Zug durchschnittlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis blau rot grün weiß
Zufallsgröße xi 6 24 40 8
P(X=xi) 8 24 7 24 3 24 6 24
xi ⋅ P(X=xi) 2 7 5 2

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 6⋅ 8 24 + 24⋅ 7 24 + 40⋅ 3 24 + 8⋅ 6 24

= 2+ 7+ 5+ 2
= 16

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 5 Kugeln, die mit 2€ beschriftet sind, 8 Kugeln, die mit 12€ und 10 Kugeln, die mit 30€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 7 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 21€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 12 30 ?
Zufallsgröße xi 2 12 30 x
Zufallsgröße yi (Gewinn) -19 -9 9 x-21
P(X=xi) 5 30 8 30 10 30 7 30
xi ⋅ P(X=xi) 1 3 16 5 10 7 30 ⋅ x
yi ⋅ P(Y=yi) - 19 6 - 12 5 3 7 30 ⋅(x-21)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 21

5 30 · 2 + 8 30 · 12 + 10 30 · 30 + 7 30 x = 21

1 3 + 16 5 +10 + 7 30 x = 21

1 3 + 16 5 +10 + 7 30 x = 21
7 30 x + 203 15 = 21 |⋅ 30
30( 7 30 x + 203 15 ) = 630
7x +406 = 630 | -406
7x = 224 |:7
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

5 30 · ( -19 ) + 8 30 · ( -9 ) + 10 30 · 9 + 7 30 ( x -21 ) = 0

- 19 6 - 12 5 +3 + 7 30 x - 49 10 = 0

- 19 6 - 12 5 +3 + 7 30 x - 49 10 = 0
7 30 x - 112 15 = 0 |⋅ 30
30( 7 30 x - 112 15 ) = 0
7x -224 = 0 | +224
7x = 224 |:7
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
• Das Spiel mit dem Glücksrad muss fair sein
• Der Einsatz soll 10€ betragen
• Der minimale Auszahlungsbetrag soll 1€ sein
• Der maximale Auszahlungsbetrag soll soll 37€ sein
• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 37
Y Gewinn (Ausz. - Einsatz) -9 27
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 37
Y Gewinn (Ausz. - Einsatz) -9 27
P(X) = P(Y) 1 9 1 27
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 9 + 1 27 = 4 27
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 4 27 = 23 27 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 37
Y Gewinn (Ausz. - Einsatz) -9 27
P(X) = P(Y) 1 9 23 54 23 54 1 27
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 9 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 5.5 14.5 37
Y Gewinn (Ausz. - Einsatz) -9 -4.5 4.5 27
P(X) = P(Y) 1 9 23 54 23 54 1 27
Winkel 40 153.33 153.33 13.33
Y ⋅ P(Y) -1 - 23 12 23 12 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -9⋅ 1 9 + -4.5⋅ 23 54 + 4.5⋅ 23 54 + 27⋅ 1 27

= -1 - 23 12 + 23 12 + 1
= - 12 12 - 23 12 + 23 12 + 12 12
= 0 12
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 6 7

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 9 70

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 9 665

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 1330

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 6 7 9 70 9 665 1 1330
xi ⋅ P(X=xi) 6 7 9 35 27 665 2 665

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 6 7 + 2⋅ 9 70 + 3⋅ 9 665 + 4⋅ 1 1330

= 6 7 + 9 35 + 27 665 + 2 665
= 570 665 + 171 665 + 27 665 + 2 665
= 770 665
= 22 19

1.16

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 10 blauen und 5 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 64€, bei 2 blauen bekommt er noch 16€, bei einer 8€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 24 91
blau -> blau -> rot 15 91
blau -> rot -> blau 15 91
blau -> rot -> rot 20 273
rot -> blau -> blau 15 91
rot -> blau -> rot 20 273
rot -> rot -> blau 20 273
rot -> rot -> rot 2 91

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 2 91

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 20 273 + 20 273 + 20 273 = 20 91

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 15 91 + 15 91 + 15 91 = 45 91

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 24 91

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 8 16 64
P(X=xi) 2 91 20 91 45 91 24 91
xi ⋅ P(X=xi) 0 160 91 720 91 1536 91

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 2 91 + 8⋅ 20 91 + 16⋅ 45 91 + 64⋅ 24 91

= 0+ 160 91 + 720 91 + 1536 91
= 0 91 + 160 91 + 720 91 + 1536 91
= 2416 91

26.55

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 3 Asse, 8 Könige, 7 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 450, 2 Damen 200 und 2 Buben 90 Punkte. Außerdem gibt es für ein Paar aus Dame und König 40 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 1 92
As -> König 1 23
As -> Dame 7 184
As -> Bube 3 92
König -> As 1 23
König -> König 7 69
König -> Dame 7 69
König -> Bube 2 23
Dame -> As 7 184
Dame -> König 7 69
Dame -> Dame 7 92
Dame -> Bube 7 92
Bube -> As 3 92
Bube -> König 2 23
Bube -> Dame 7 92
Bube -> Bube 5 92

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 1 92

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 7 69

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 7 92

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 5 92

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 7 69 + 7 69 = 14 69

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 450 200 90 40
P(X=xi) 1 92 7 69 7 92 5 92 14 69
xi ⋅ P(X=xi) 250 23 1050 23 350 23 225 46 560 69

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 1 92 + 450⋅ 7 69 + 200⋅ 7 92 + 90⋅ 5 92 + 40⋅ 14 69

= 250 23 + 1050 23 + 350 23 + 225 46 + 560 69
= 1500 138 + 6300 138 + 2100 138 + 675 138 + 1120 138
= 11695 138

84.75