Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 4 beschriftet sind und fünf Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.
Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 16X = 36X = 81
zugehörige
Ereignisse
4 - 44 - 9
9 - 4
9 - 9

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Summe der Zahlen die bei den beiden Glücksräder erscheinen.
Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
2 - 2
3 - 1
2 - 3
3 - 2
3 - 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Wahrscheinlichkeit P(X)
3 8 3 8 3 8 3 8
+ 3 8 3 8
3 8 1 4
+ 3 8 3 8
+ 1 4 3 8
3 8 1 4
+ 1 4 3 8
1 4 1 4
  = 9 64 9 64 + 9 64 3 32 + 9 64 + 3 32 3 32 + 3 32 1 16



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X23456
P(X=k) 9 64 9 32 21 64 3 16 1 16

Zufallsgröße (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 3 beschriftet, zwei Kugeln, die mit der Zahl 4 sind, und sechs Kugeln, die mit der Zahl 7 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größeren und der kleineren Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Ereignisse
3 - 3
4 - 4
7 - 7
3 - 4
4 - 3
4 - 7
7 - 4
3 - 7
7 - 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 5 1 9
+ 1 5 1 9
+ 3 5 5 9
1 5 2 9
+ 1 5 2 9
1 5 6 9
+ 3 5 2 9
1 5 6 9
+ 3 5 2 9
  = 1 45 + 1 45 + 1 3 2 45 + 2 45 2 15 + 2 15 2 15 + 2 15



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0134
P(X=k) 17 45 4 45 4 15 4 15

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.
Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 15 17 15 136 1 136

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X23456
P(X=k) 25 324 ??? 121 1296

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=2) = 25 324 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 25 324 und somit p1 = 5 18 .

Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=6) = 121 1296 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 121 1296 und somit p3 = 11 36 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 5 18 - 11 36 = 36 36 - 10 36 - 11 36 = 15 36 = 5 12

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 5 18 ⋅ 360° = 100°

α2 = 5 12 ⋅ 360° = 150°

α3 = 11 36 ⋅ 360° = 110°

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 100 Punkte, auf jedem fünften Los 15 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 100 15 12 1
Zufallsgröße xi 100 15 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 10 3 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 100⋅ 1 10 + 15⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 10+ 3+ 3+ 9 20
= 329 20

16.45

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 9 Kugeln, die mit 2€ beschriftet sind, 9 Kugeln, die mit 12€ und 3 Kugeln, die mit 24€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 3 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 13,25€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 12 24 ?
Zufallsgröße xi 2 12 24 x
Zufallsgröße yi (Gewinn) -11.25 -1.25 10.75 x-13.25
P(X=xi) 9 24 9 24 3 24 3 24
xi ⋅ P(X=xi) 3 4 9 2 3 3 24 ⋅ x
yi ⋅ P(Y=yi) - 101.25 24 - 11.25 24 32.25 24 3 24 ⋅(x-13.25)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 13.25

9 24 · 2 + 9 24 · 12 + 3 24 · 24 + 3 24 x = 13.25

3 4 + 9 2 +3 + 3 24 x = 13.25

3 4 + 9 2 +3 + 1 8 x = 13,25
1 8 x + 33 4 = 13,25 |⋅ 8
8( 1 8 x + 33 4 ) = 106
x +66 = 106 | -66
x = 40

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

9 24 · ( -11,25 ) + 9 24 · ( -1,25 ) + 3 24 · 10,75 + 3 24 ( x -13,25 ) = 0

- 33.75 8 - 3.75 8 + 10.75 8 + 1 8 x -1,65625 = 0

-4,21875 -0,46875 +1,34375 + 1 8 x -1,65625 = 0
1 8 x -5 = 0 |⋅ 8
8( 1 8 x -5 ) = 0
x -40 = 0 | +40
x = 40

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.
- Der Einsatz für ein Spiel soll 2€ betragen
- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
- bei einem Feld soll keine Auszahlung erfolgen
- um Kunden zu locken soll bei einem Feld 42€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 42
Y Gewinn (Ausz. - Einsatz) -2 40
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 42
Y Gewinn (Ausz. - Einsatz) -2 40
P(X) = P(Y) 1 2 1 40
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 42
Y Gewinn (Ausz. - Einsatz) -2 0 40
P(X) = P(Y) 1 2 9 40 1 40
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 9 40 + 1 40 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 42
Y Gewinn (Ausz. - Einsatz) -2 0 40
P(X) = P(Y) 1 2 1 8 9 40 1 8 1 40
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 42
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 40
P(X) = P(Y) 1 2 1 8 9 40 1 8 1 40
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 42
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 40
P(X) = P(Y) 1 2 1 8 9 40 1 8 1 40
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 9 40 + 1⋅ 1 8 + 40⋅ 1 40

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 5 7

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 20 91

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 5 91

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 10 1001

Die Wahrscheinlichkeit für ein 'Herz' im 5-ten Versuch st: 1 1001

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 5 7 20 91 5 91 10 1001 1 1001
xi ⋅ P(X=xi) 5 7 40 91 15 91 40 1001 5 1001

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 5 7 + 2⋅ 20 91 + 3⋅ 5 91 + 4⋅ 10 1001 + 5⋅ 1 1001

= 5 7 + 40 91 + 15 91 + 40 1001 + 5 1001
= 715 1001 + 440 1001 + 165 1001 + 40 1001 + 5 1001
= 1365 1001
= 15 11

1.36

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 4 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 14
As -> As -> andereKarte 1 7
As -> andereKarte -> As 1 7
As -> andereKarte -> andereKarte 1 7
andereKarte -> As -> As 1 7
andereKarte -> As -> andereKarte 1 7
andereKarte -> andereKarte -> As 1 7
andereKarte -> andereKarte -> andereKarte 1 14

Die Wahrscheinlichkeit für 0 mal 'As' ist: 1 14

Die Wahrscheinlichkeit für 1 mal 'As' ist: 1 7 + 1 7 + 1 7 = 3 7

Die Wahrscheinlichkeit für 2 mal 'As' ist: 1 7 + 1 7 + 1 7 = 3 7

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 14

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 1 14 3 7 3 7 1 14
xi ⋅ P(X=xi) 0 30 7 60 7 15 7

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 14 + 10⋅ 3 7 + 20⋅ 3 7 + 30⋅ 1 14

= 0+ 30 7 + 60 7 + 15 7
= 0 7 + 30 7 + 60 7 + 15 7
= 105 7
= 15

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 14€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 7€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 1€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 14 7 1
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 7 9 7 6 5 18

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 14⋅ 1 18 + 7⋅ 1 6 + 1⋅ 5 18

= 7 9 + 7 6 + 5 18
= 14 18 + 21 18 + 5 18
= 40 18
= 20 9

2.22