Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt dabei die Summe der Augenzahlen der beiden Würfe. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Augenzahlen' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 6X = 7X = 10X = 11X = 12
zugehörige
Ereignisse
1 - 11 - 5
5 - 1
1 - 6
6 - 1
5 - 55 - 6
6 - 5
6 - 6

Zufallsgröße WS-Verteilung

Beispiel:

Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ereignisse
0 - 0 - 00 - 0 - 1
0 - 1 - 0
1 - 0 - 0
0 - 1 - 1
1 - 0 - 1
1 - 1 - 0
1 - 1 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
5 6 5 6 5 6 5 6 5 6 1 6
+ 5 6 1 6 5 6
+ 1 6 5 6 5 6
5 6 1 6 1 6
+ 1 6 5 6 1 6
+ 1 6 1 6 5 6
1 6 1 6 1 6
  = 125 216 25 216 + 25 216 + 25 216 5 216 + 5 216 + 5 216 1 216



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 125 216 25 72 5 72 1 216

Zufallsgröße (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 4, zwei Karten mit dem Wert 7 und vier 8er.
Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Werte der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 8X = 11X = 12X = 14X = 15X = 16
zugehörige
Ereignisse
4 - 44 - 7
7 - 4
4 - 8
8 - 4
7 - 77 - 8
8 - 7
8 - 8
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 8X = 11X = 12X = 14X = 15X = 16
zugehörige
Wahrscheinlichkeit P(X)
1 4 1 7 1 4 2 7
+ 1 4 2 7
1 4 4 7
+ 1 2 2 7
1 4 1 7 1 4 4 7
+ 1 2 2 7
1 2 3 7
  = 1 28 1 14 + 1 14 1 7 + 1 7 1 28 1 7 + 1 7 3 14



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X81112141516
P(X=k) 1 28 1 7 2 7 1 28 2 7 3 14

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.
Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 3 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 4-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 4 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X1234
P(X=k) 6 7 9 70 9 665 1 1330

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 10 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 1, 4 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X258101318
P(X=k) 9 100 ???? 4 25

Lösung einblenden

Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=2) = 9 100 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 9 100 und somit p1 = 3 10 .

Ebenso gibt es für X=18 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=18) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=18) = 4 25 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 4 25 und somit p3 = 2 5 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 3 10 - 2 5 = 10 10 - 3 10 - 4 10 = 3 10

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 10 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 10

Somit erhalten wir:

n1 = 3 10 ⋅ 10 = 3

n4 = 3 10 ⋅ 10 = 3

n9 = 2 5 ⋅ 10 = 4

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 200 Punkte, auf jedem fünften Los 15 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 200 15 12 1
Zufallsgröße xi 200 15 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 20 3 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 200⋅ 1 10 + 15⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 20+ 3+ 3+ 9 20
= 529 20

26.45

Einsatz für faires Spiel bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bei einem Glücksrad wie rechts abgebildet soll das noch fehlende Feld mit einem Betrag so bestückt werden, dass das Spiel bei einem Einsatz von 11,75€ fair ist.

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 8 12 ?
Zufallsgröße xi 2 8 12 x
Zufallsgröße yi (Gewinn) -9.75 -3.75 0.25 x-11.75
P(X=xi) 3 8 2 8 2 8 1 8
xi ⋅ P(X=xi) 3 4 2 3 1 8 ⋅ x
yi ⋅ P(Y=yi) - 29.25 8 - 7.5 8 0.5 8 1 8 ⋅(x-11.75)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 11.75

3 8 · 2 + 2 8 · 8 + 2 8 · 12 + 1 8 x = 11.75

3 4 +2 +3 + 1 8 x = 11.75

3 4 +2 +3 + 1 8 x = 11,75
1 8 x + 23 4 = 11,75 |⋅ 8
8( 1 8 x + 23 4 ) = 94
x +46 = 94 | -46
x = 48

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

3 8 · ( -9,75 ) + 2 8 · ( -3,75 ) + 2 8 · 0,25 + 1 8 ( x -11,75 ) = 0

- 29.25 8 - 3.75 4 + 0.25 4 + 1 8 x -1,46875 = 0

-3,65625 -0,9375 +0,0625 + 1 8 x -1,46875 = 0
1 8 x -6 = 0 |⋅ 8
8( 1 8 x -6 ) = 0
x -48 = 0 | +48
x = 48

In beiden Fällen ist also der gesuchte Betrag: 48

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.
- Der Einsatz für ein Spiel soll 2€ betragen
- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
- bei einem Feld soll keine Auszahlung erfolgen
- um Kunden zu locken soll bei einem Feld 46€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 46
Y Gewinn (Ausz. - Einsatz) -2 44
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 46
Y Gewinn (Ausz. - Einsatz) -2 44
P(X) = P(Y) 1 2 1 44
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 46
Y Gewinn (Ausz. - Einsatz) -2 0 44
P(X) = P(Y) 1 2 5 22 1 44
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 5 22 + 1 44 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 46
Y Gewinn (Ausz. - Einsatz) -2 0 44
P(X) = P(Y) 1 2 1 8 5 22 1 8 1 44
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 46
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 44
P(X) = P(Y) 1 2 1 8 5 22 1 8 1 44
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 46
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 44
P(X) = P(Y) 1 2 1 8 5 22 1 8 1 44
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 5 22 + 1⋅ 1 8 + 44⋅ 1 44

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 3 4

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 9 44

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 9 220

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 1 220

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 3 4 9 44 9 220 1 220
xi ⋅ P(X=xi) 3 4 9 22 27 220 1 55

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 3 4 + 2⋅ 9 44 + 3⋅ 9 220 + 4⋅ 1 220

= 3 4 + 9 22 + 27 220 + 1 55
= 165 220 + 90 220 + 27 220 + 4 220
= 286 220
= 13 10

1.3

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 12 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 220 969
Mädchen -> Mädchen -> Jungs 154 969
Mädchen -> Jungs -> Mädchen 154 969
Mädchen -> Jungs -> Jungs 28 323
Jungs -> Mädchen -> Mädchen 154 969
Jungs -> Mädchen -> Jungs 28 323
Jungs -> Jungs -> Mädchen 28 323
Jungs -> Jungs -> Jungs 35 969

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 35 969

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 28 323 + 28 323 + 28 323 = 84 323

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 154 969 + 154 969 + 154 969 = 154 323

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 220 969

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 35 969 84 323 154 323 220 969
xi ⋅ P(X=xi) 0 84 323 308 323 220 323

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 35 969 + 1⋅ 84 323 + 2⋅ 154 323 + 3⋅ 220 969

= 0+ 84 323 + 308 323 + 220 323
= 0 323 + 84 323 + 308 323 + 220 323
= 612 323
= 36 19

1.89

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 16€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 6€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 1€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 16 6 1
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 8 9 1 5 18

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 16⋅ 1 18 + 6⋅ 1 6 + 1⋅ 5 18

= 8 9 + 1+ 5 18
= 16 18 + 18 18 + 5 18
= 39 18
= 13 6

2.17