Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz der größeren Zahl minus der kleineren Zahl der beiden Glücksräder. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Ereignisse
1 - 1
2 - 2
3 - 3
1 - 2
2 - 1
2 - 3
3 - 2
1 - 3
3 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl, der Würfe bei denen "Zahl" erscheint. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl von Zahl-Würfen' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ereignisse
0 - 0 - 00 - 0 - 1
0 - 1 - 0
1 - 0 - 0
0 - 1 - 1
1 - 0 - 1
1 - 1 - 0
1 - 1 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 2 1 2 1 2 1 2 1 2
+ 1 2 1 2 1 2
+ 1 2 1 2 1 2
1 2 1 2 1 2
+ 1 2 1 2 1 2
+ 1 2 1 2 1 2
1 2 1 2 1 2
  = 1 8 1 8 + 1 8 + 1 8 1 8 + 1 8 + 1 8 1 8



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 1 8 3 8 3 8 1 8

Zufallsgröße (auch ohne zur.)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 2 beschriftet, vier Kugeln, die mit der Zahl 6 sind, und zwei Kugeln, die mit der Zahl 8 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größeren und der kleineren Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 2X = 4X = 6
zugehörige
Ereignisse
2 - 2
6 - 6
8 - 8
6 - 8
8 - 6
2 - 6
6 - 2
2 - 8
8 - 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 2X = 4X = 6
zugehörige
Wahrscheinlichkeit P(X)
2 5 3 9
+ 2 5 3 9
+ 1 5 1 9
2 5 2 9
+ 1 5 4 9
2 5 4 9
+ 2 5 4 9
2 5 2 9
+ 1 5 4 9
  = 2 15 + 2 15 + 1 45 4 45 + 4 45 8 45 + 8 45 4 45 + 4 45



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0246
P(X=k) 13 45 8 45 16 45 8 45

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.
Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 12 13 24 325 1 325

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X23456
P(X=k) 1 16 ??? 1 144

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=2) = 1 16 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 16 und somit p1 = 1 4 .

Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=6) = 1 144 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 144 und somit p3 = 1 12 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 4 - 1 12 = 12 12 - 3 12 - 1 12 = 8 12 = 2 3

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 1 4 ⋅ 360° = 90°

α2 = 2 3 ⋅ 360° = 240°

α3 = 1 12 ⋅ 360° = 30°

Erwartungswerte

Beispiel:

Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 48€, bei einer 5 bekommt er 24€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist?

Lösung einblenden

Die Zufallsgröße X beschreibt den Auszahlungsbetrag.

Erwartungswert der Zufallsgröße X

Ereignis 1-3 4 5 6
Zufallsgröße xi 6 12 24 48
P(X=xi) 1 2 1 6 1 6 1 6
xi ⋅ P(X=xi) 3 2 4 8

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 6⋅ 1 2 + 12⋅ 1 6 + 24⋅ 1 6 + 48⋅ 1 6

= 3+ 2+ 4+ 8
= 17

Einsatz für faires Spiel bestimmen

Beispiel:

Ein Spieler darf aus einer Urne mit 7 blauen, 5 roten, 7 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 24€. Bei rot erhält er 96€ und bei grün erhält er 48€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 81€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 24 96 48 x
Zufallsgröße yi (Gewinn) -57 15 -33 x-81
P(X=xi) 7 24 5 24 7 24 5 24
xi ⋅ P(X=xi) 7 20 14 5 24 ⋅ x
yi ⋅ P(Y=yi) - 133 8 25 8 - 77 8 5 24 ⋅(x-81)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 81

7 24 · 24 + 5 24 · 96 + 7 24 · 48 + 5 24 x = 81

7 +20 +14 + 5 24 x = 81

7 +20 +14 + 5 24 x = 81
5 24 x +41 = 81 |⋅ 24
24( 5 24 x +41 ) = 1944
5x +984 = 1944 | -984
5x = 960 |:5
x = 192

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

7 24 · ( -57 ) + 5 24 · 15 + 7 24 · ( -33 ) + 5 24 ( x -81 ) = 0

- 133 8 + 25 8 - 77 8 + 5 24 x - 135 8 = 0

- 133 8 + 25 8 - 77 8 + 5 24 x - 135 8 = 0
5 24 x -40 = 0 |⋅ 24
24( 5 24 x -40 ) = 0
5x -960 = 0 | +960
5x = 960 |:5
x = 192

In beiden Fällen ist also der gesuchte Betrag: 192

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
• Das Spiel mit dem Glücksrad muss fair sein
• Der Einsatz soll 7€ betragen
• Der minimale Auszahlungsbetrag soll 2€ sein
• Der maximale Auszahlungsbetrag soll soll 34€ sein
• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 34
Y Gewinn (Ausz. - Einsatz) -5 27
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 34
Y Gewinn (Ausz. - Einsatz) -5 27
P(X) = P(Y) 1 5 1 27
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 5 + 1 27 = 32 135
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 32 135 = 103 135 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 34
Y Gewinn (Ausz. - Einsatz) -5 27
P(X) = P(Y) 1 5 103 270 103 270 1 27
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 5 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 4.5 9.5 34
Y Gewinn (Ausz. - Einsatz) -5 -2.5 2.5 27
P(X) = P(Y) 1 5 103 270 103 270 1 27
Winkel 72 137.33 137.33 13.33
Y ⋅ P(Y) -1 - 103 108 103 108 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -5⋅ 1 5 + -2.5⋅ 103 270 + 2.5⋅ 103 270 + 27⋅ 1 27

= -1 - 103 108 + 103 108 + 1
= - 108 108 - 103 108 + 103 108 + 108 108
= 0 108
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 6 7

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 9 70

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 9 665

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 1330

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 6 7 9 70 9 665 1 1330
xi ⋅ P(X=xi) 6 7 9 35 27 665 2 665

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 6 7 + 2⋅ 9 70 + 3⋅ 9 665 + 4⋅ 1 1330

= 6 7 + 9 35 + 27 665 + 2 665
= 570 665 + 171 665 + 27 665 + 2 665
= 770 665
= 22 19

1.16

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 12 Mädchen und 8 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 11 57
Mädchen -> Mädchen -> Jungs 44 285
Mädchen -> Jungs -> Mädchen 44 285
Mädchen -> Jungs -> Jungs 28 285
Jungs -> Mädchen -> Mädchen 44 285
Jungs -> Mädchen -> Jungs 28 285
Jungs -> Jungs -> Mädchen 28 285
Jungs -> Jungs -> Jungs 14 285

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 14 285

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 28 285 + 28 285 + 28 285 = 28 95

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 44 285 + 44 285 + 44 285 = 44 95

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 11 57

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 14 285 28 95 44 95 11 57
xi ⋅ P(X=xi) 0 28 95 88 95 11 19

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 14 285 + 1⋅ 28 95 + 2⋅ 44 95 + 3⋅ 11 57

= 0+ 28 95 + 88 95 + 11 19
= 0 95 + 28 95 + 88 95 + 55 95
= 171 95
= 9 5

1.8

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 8 Asse, 4 Könige, 6 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 450, 2 Damen 180 und 2 Buben 90 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 7 69
As -> König 4 69
As -> Dame 2 23
As -> Bube 2 23
König -> As 4 69
König -> König 1 46
König -> Dame 1 23
König -> Bube 1 23
Dame -> As 2 23
Dame -> König 1 23
Dame -> Dame 5 92
Dame -> Bube 3 46
Bube -> As 2 23
Bube -> König 1 23
Bube -> Dame 3 46
Bube -> Bube 5 92

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 7 69

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 1 46

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 5 92

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 5 92

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 1 23 + 1 23 = 2 23

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 450 180 90 30
P(X=xi) 7 69 1 46 5 92 5 92 2 23
xi ⋅ P(X=xi) 3500 69 225 23 225 23 225 46 60 23

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 7 69 + 450⋅ 1 46 + 180⋅ 5 92 + 90⋅ 5 92 + 30⋅ 2 23

= 3500 69 + 225 23 + 225 23 + 225 46 + 60 23
= 7000 138 + 1350 138 + 1350 138 + 675 138 + 360 138
= 10735 138

77.79