Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Summe der Zahlen die bei den beiden Glücksräder erscheinen. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
2 - 2
3 - 1
2 - 3
3 - 2
3 - 3

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz der größeren Zahl minus der kleineren Zahl der beiden Glücksräder. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Ereignisse
1 - 1
2 - 2
3 - 3
1 - 2
2 - 1
2 - 3
3 - 2
1 - 3
3 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 2
+ 1 4 1 4
+ 1 4 1 4
1 2 1 4
+ 1 4 1 2
+ 1 4 1 4
+ 1 4 1 4
1 2 1 4
+ 1 4 1 2
  = 1 4 + 1 16 + 1 16 1 8 + 1 8 + 1 16 + 1 16 1 8 + 1 8



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X012
P(X=k) 3 8 3 8 1 4

Zufallsgröße (auch ohne zur.)

Beispiel:

In einer Urne sind sechs Kugeln, die mit der Zahl 3 beschriftet, zwei Kugeln, die mit der Zahl 4 sind, und vier Kugeln, die mit der Zahl 8 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größeren und der kleineren Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 4X = 5
zugehörige
Ereignisse
3 - 3
4 - 4
8 - 8
3 - 4
4 - 3
4 - 8
8 - 4
3 - 8
8 - 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 4X = 5
zugehörige
Wahrscheinlichkeit P(X)
1 2 5 11
+ 1 6 1 11
+ 1 3 3 11
1 2 2 11
+ 1 6 6 11
1 6 4 11
+ 1 3 2 11
1 2 4 11
+ 1 3 6 11
  = 5 22 + 1 66 + 1 11 1 11 + 1 11 2 33 + 2 33 2 11 + 2 11



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0145
P(X=k) 1 3 2 11 4 33 4 11

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 1 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint.
Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 1 5 1 5 1 5 1 5 1 5

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 12 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 3, 6 und 7 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X6910121314
P(X=k) 1 16 ???? 1 9

Lösung einblenden

Für X=6 gibt es nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p1 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=6) = 1 16 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 16 und somit p1 = 1 4 .

Ebenso gibt es für X=14 nur das Ereignis: '7'-'7', also dass zwei mal hintereinander '7' kommt.

Wenn p3 die Wahrscheinlichkeit von '7' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '7' kommt, gelten: P(X=14) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=14) = 1 9 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 9 und somit p3 = 1 3 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 4 - 1 3 = 12 12 - 3 12 - 4 12 = 5 12

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 12 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 12

Somit erhalten wir:

n3 = 1 4 ⋅ 12 = 3

n6 = 5 12 ⋅ 12 = 5

n7 = 1 3 ⋅ 12 = 4

Erwartungswerte

Beispiel:

Ein Spieler darf aus einer Urne mit 9 blauen, 10 roten, 3 grünen und 3 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 25€. Bei rot erhält er 5€, bei grün erhält er 50€ und bei weiß erhält er 100€. Wieviel bringt ein Zug durchschnittlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis blau rot grün weiß
Zufallsgröße xi 25 5 50 100
P(X=xi) 9 25 10 25 3 25 3 25
xi ⋅ P(X=xi) 9 2 6 12

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 25⋅ 9 25 + 5⋅ 10 25 + 50⋅ 3 25 + 100⋅ 3 25

= 9+ 2+ 6+ 12
= 29

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 8 Kugeln, die mit 6€ beschriftet sind, 3 Kugeln, die mit 12€ und 10 Kugeln, die mit 22€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 3 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 17,67€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 6 12 22 ?
Zufallsgröße xi 6 12 22 x
Zufallsgröße yi (Gewinn) -11.67 -5.67 4.33 x-17.67
P(X=xi) 8 24 3 24 10 24 3 24
xi ⋅ P(X=xi) 2 3 2 55 6 3 24 ⋅ x
yi ⋅ P(Y=yi) - 93.36 24 - 17.01 24 43.3 24 3 24 ⋅(x-17.67)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 17.67

8 24 · 6 + 3 24 · 12 + 10 24 · 22 + 3 24 x = 17.67

2 + 3 2 + 55 6 + 3 24 x = 17.67

2 + 3 2 + 55 6 + 1 8 x = 17,67
1 8 x + 38 3 = 17,67 |⋅ 24
24( 1 8 x + 38 3 ) = 424,08
3x +304 = 424,08 | -304
3x = 120,08 |:3
x = 40,0267

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

8 24 · ( -11,67 ) + 3 24 · ( -5,67 ) + 10 24 · 4,33 + 3 24 ( x -17,67 ) = 0

- 11.67 3 - 5.67 8 + 21.65 12 + 1 8 x -2,20875 = 0

-3,89 -0,70875 +1,8041666666667 + 1 8 x -2,20875 = 0
1 8 x -5,0033333333333 = 0 |⋅ 8
8( 1 8 x -5,0033333333333 ) = 0
x -40,026666666667 = 0 | +40,026666666667
x = 40,026666666667

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.
- Der Einsatz für ein Spiel soll 2€ betragen
- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
- bei einem Feld soll keine Auszahlung erfolgen
- um Kunden zu locken soll bei einem Feld 38€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 38
Y Gewinn (Ausz. - Einsatz) -2 36
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 38
Y Gewinn (Ausz. - Einsatz) -2 36
P(X) = P(Y) 1 2 1 36
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 38
Y Gewinn (Ausz. - Einsatz) -2 0 36
P(X) = P(Y) 1 2 2 9 1 36
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 2 9 + 1 36 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 38
Y Gewinn (Ausz. - Einsatz) -2 0 36
P(X) = P(Y) 1 2 1 8 2 9 1 8 1 36
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 38
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 36
P(X) = P(Y) 1 2 1 8 2 9 1 8 1 36
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 38
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 36
P(X) = P(Y) 1 2 1 8 2 9 1 8 1 36
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 2 9 + 1⋅ 1 8 + 36⋅ 1 36

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 9 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 9 13

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 3 13

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 9 143

Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st: 9 715

Die Wahrscheinlichkeit für ein 'rot' im 5-ten Versuch st: 1 715

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 9 13 3 13 9 143 9 715 1 715
xi ⋅ P(X=xi) 9 13 6 13 27 143 36 715 1 143

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 9 13 + 2⋅ 3 13 + 3⋅ 9 143 + 4⋅ 9 715 + 5⋅ 1 715

= 9 13 + 6 13 + 27 143 + 36 715 + 1 143
= 495 715 + 330 715 + 135 715 + 36 715 + 5 715
= 1001 715
= 7 5

1.4

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 6 blauen und 4 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 32€, bei 2 blauen bekommt er noch 8€, bei einer 4€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 1 6
blau -> blau -> rot 1 6
blau -> rot -> blau 1 6
blau -> rot -> rot 1 10
rot -> blau -> blau 1 6
rot -> blau -> rot 1 10
rot -> rot -> blau 1 10
rot -> rot -> rot 1 30

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 1 30

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 1 10 + 1 10 + 1 10 = 3 10

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 1 6 + 1 6 + 1 6 = 1 2

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 1 6

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 4 8 32
P(X=xi) 1 30 3 10 1 2 1 6
xi ⋅ P(X=xi) 0 6 5 4 16 3

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 30 + 4⋅ 3 10 + 8⋅ 1 2 + 32⋅ 1 6

= 0+ 6 5 + 4+ 16 3
= 0 15 + 18 15 + 60 15 + 80 15
= 158 15

10.53

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Erscheinen zwei Kronen, so erhält man 20€. Bei einer Krone erhält man immer hin noch 4€. Erscheinen zwei gleiche Dinge (außer Kronen), so erhält man 4€. In allen anderen Fällen geht man leer aus. Mit wie viel Euro kann man bei einem Spiel durchschnittlich rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Blume -> Blume 9 64
Blume -> Raute 3 32
Blume -> Stein 3 32
Blume -> Krone 3 64
Raute -> Blume 3 32
Raute -> Raute 1 16
Raute -> Stein 1 16
Raute -> Krone 1 32
Stein -> Blume 3 32
Stein -> Raute 1 16
Stein -> Stein 1 16
Stein -> Krone 1 32
Krone -> Blume 3 64
Krone -> Raute 1 32
Krone -> Stein 1 32
Krone -> Krone 1 64

Die Wahrscheinlichkeit für '2 gleiche' ist:

P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= 9 64 + 1 16 + 1 16 = 17 64

Die Wahrscheinlichkeit für '1 Krone' ist:

P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= 3 64 + 1 32 + 1 32 + 3 64 + 1 32 + 1 32 = 7 32

Die Wahrscheinlichkeit für '2 Kronen' ist:

P('Krone'-'Krone')
= 1 64

Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.

Erwartungswert der Zufallsgröße X

Ereignis 2 gleiche 1 Krone 2 Kronen
Zufallsgröße xi 4 4 20
P(X=xi) 17 64 7 32 1 64
xi ⋅ P(X=xi) 17 16 7 8 5 16

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 4⋅ 17 64 + 4⋅ 7 32 + 20⋅ 1 64

= 17 16 + 7 8 + 5 16
= 17 16 + 14 16 + 5 16
= 36 16
= 9 4

2.25