Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt dabei die Summe der Augenzahlen der beiden Würfe. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Augenzahlen' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 4X = 5X = 6X = 7X = 8
zugehörige
Ereignisse
1 - 11 - 3
3 - 1
1 - 4
4 - 1
3 - 33 - 4
4 - 3
4 - 4

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt das Produkt der Zahlen die bei den beiden Glücksräder erscheinen. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 1X = 2X = 3X = 4X = 6X = 9
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
3 - 1
2 - 22 - 3
3 - 2
3 - 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 1X = 2X = 3X = 4X = 6X = 9
zugehörige
Wahrscheinlichkeit P(X)
5 8 5 8 5 8 1 4
+ 1 4 5 8
5 8 1 8
+ 1 8 5 8
1 4 1 4 1 4 1 8
+ 1 8 1 4
1 8 1 8
  = 25 64 5 32 + 5 32 5 64 + 5 64 1 16 1 32 + 1 32 1 64



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X123469
P(X=k) 25 64 5 16 5 32 1 16 1 16 1 64

Zufallsgröße (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch vier Karten mit dem Wert 2, zwei Karten mit dem Wert 6 und zwei 8er.
Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 2X = 4X = 6
zugehörige
Ereignisse
2 - 2
6 - 6
8 - 8
6 - 8
8 - 6
2 - 6
6 - 2
2 - 8
8 - 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 2X = 4X = 6
zugehörige
Wahrscheinlichkeit P(X)
1 2 3 7
+ 1 4 1 7
+ 1 4 1 7
1 4 2 7
+ 1 4 2 7
1 2 2 7
+ 1 4 4 7
1 2 2 7
+ 1 4 4 7
  = 3 14 + 1 28 + 1 28 1 14 + 1 14 1 7 + 1 7 1 7 + 1 7



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0246
P(X=k) 2 7 1 7 2 7 2 7

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 8 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint.
Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 2 3 8 33 4 55 8 495 1 495

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 15 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 4 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X468101216
P(X=k) 64 225 ???? 16 225

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 64 225 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 64 225 und somit p1 = 8 15 .

Ebenso gibt es für X=16 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.

Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=16) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=16) = 16 225 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 16 225 und somit p3 = 4 15 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 8 15 - 4 15 = 15 15 - 8 15 - 4 15 = 3 15 = 1 5

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 15 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 15

Somit erhalten wir:

n2 = 8 15 ⋅ 15 = 8

n4 = 1 5 ⋅ 15 = 3

n8 = 4 15 ⋅ 15 = 4

Erwartungswerte

Beispiel:

Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 48€, bei einer 5 bekommt er 24€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist?

Lösung einblenden

Die Zufallsgröße X beschreibt den Auszahlungsbetrag.

Erwartungswert der Zufallsgröße X

Ereignis 1-3 4 5 6
Zufallsgröße xi 6 12 24 48
P(X=xi) 1 2 1 6 1 6 1 6
xi ⋅ P(X=xi) 3 2 4 8

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 6⋅ 1 2 + 12⋅ 1 6 + 24⋅ 1 6 + 48⋅ 1 6

= 3+ 2+ 4+ 8
= 17

Einsatz für faires Spiel bestimmen

Beispiel:

Ein Spieler darf aus einer Urne mit 6 blauen, 8 roten, 9 grünen und 7 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 60€. Bei rot erhält er 15€ und bei grün erhält er 10€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 26€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 60 15 10 x
Zufallsgröße yi (Gewinn) 34 -11 -16 x-26
P(X=xi) 6 30 8 30 9 30 7 30
xi ⋅ P(X=xi) 12 4 3 7 30 ⋅ x
yi ⋅ P(Y=yi) 34 5 - 44 15 - 24 5 7 30 ⋅(x-26)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 26

6 30 · 60 + 8 30 · 15 + 9 30 · 10 + 7 30 x = 26

12 +4 +3 + 7 30 x = 26

12 +4 +3 + 7 30 x = 26
7 30 x +19 = 26 |⋅ 30
30( 7 30 x +19 ) = 780
7x +570 = 780 | -570
7x = 210 |:7
x = 30

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

6 30 · 34 + 8 30 · ( -11 ) + 9 30 · ( -16 ) + 7 30 ( x -26 ) = 0

34 5 - 44 15 - 24 5 + 7 30 x - 91 15 = 0

34 5 - 44 15 - 24 5 + 7 30 x - 91 15 = 0
7 30 x -7 = 0 |⋅ 30
30( 7 30 x -7 ) = 0
7x -210 = 0 | +210
7x = 210 |:7
x = 30

In beiden Fällen ist also der gesuchte Betrag: 30

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.
- Der Einsatz für ein Spiel soll 2€ betragen
- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
- bei einem Feld soll keine Auszahlung erfolgen
- um Kunden zu locken soll bei einem Feld 50€ ausgezahlt werden
Ordne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 50
Y Gewinn (Ausz. - Einsatz) -2 48
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 50
Y Gewinn (Ausz. - Einsatz) -2 48
P(X) = P(Y) 1 2 1 48
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 50
Y Gewinn (Ausz. - Einsatz) -2 0 48
P(X) = P(Y) 1 2 11 48 1 48
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 11 48 + 1 48 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 50
Y Gewinn (Ausz. - Einsatz) -2 0 48
P(X) = P(Y) 1 2 1 8 11 48 1 8 1 48
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 50
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 48
P(X) = P(Y) 1 2 1 8 11 48 1 8 1 48
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 50
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 48
P(X) = P(Y) 1 2 1 8 11 48 1 8 1 48
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 11 48 + 1⋅ 1 8 + 48⋅ 1 48

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 2 3

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 8 33

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 4 55

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 8 495

Die Wahrscheinlichkeit für ein 'Herz' im 5-ten Versuch st: 1 495

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 2 3 8 33 4 55 8 495 1 495
xi ⋅ P(X=xi) 2 3 16 33 12 55 32 495 1 99

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 2 3 + 2⋅ 8 33 + 3⋅ 4 55 + 4⋅ 8 495 + 5⋅ 1 495

= 2 3 + 16 33 + 12 55 + 32 495 + 1 99
= 330 495 + 240 495 + 108 495 + 32 495 + 5 495
= 715 495
= 13 9

1.44

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 15 Mädchen und 8 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 65 253
Mädchen -> Mädchen -> Jungs 40 253
Mädchen -> Jungs -> Mädchen 40 253
Mädchen -> Jungs -> Jungs 20 253
Jungs -> Mädchen -> Mädchen 40 253
Jungs -> Mädchen -> Jungs 20 253
Jungs -> Jungs -> Mädchen 20 253
Jungs -> Jungs -> Jungs 8 253

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 8 253

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 20 253 + 20 253 + 20 253 = 60 253

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 40 253 + 40 253 + 40 253 = 120 253

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 65 253

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 8 253 60 253 120 253 65 253
xi ⋅ P(X=xi) 0 60 253 240 253 195 253

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 8 253 + 1⋅ 60 253 + 2⋅ 120 253 + 3⋅ 65 253

= 0+ 60 253 + 240 253 + 195 253
= 0 253 + 60 253 + 240 253 + 195 253
= 495 253
= 45 23

1.96

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 9 Asse, 8 Könige, 6 Damen und 7 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 350, 2 Damen 220 und 2 Buben 80 Punkte. Außerdem gibt es für ein Paar aus Dame und König 35 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 12 145
As -> König 12 145
As -> Dame 9 145
As -> Bube 21 290
König -> As 12 145
König -> König 28 435
König -> Dame 8 145
König -> Bube 28 435
Dame -> As 9 145
Dame -> König 8 145
Dame -> Dame 1 29
Dame -> Bube 7 145
Bube -> As 21 290
Bube -> König 28 435
Bube -> Dame 7 145
Bube -> Bube 7 145

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 12 145

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 28 435

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 1 29

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 7 145

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 8 145 + 8 145 = 16 145

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 350 220 80 35
P(X=xi) 12 145 28 435 1 29 7 145 16 145
xi ⋅ P(X=xi) 2400 29 1960 87 220 29 112 29 112 29

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 12 145 + 350⋅ 28 435 + 220⋅ 1 29 + 80⋅ 7 145 + 35⋅ 16 145

= 2400 29 + 1960 87 + 220 29 + 112 29 + 112 29
= 7200 87 + 1960 87 + 660 87 + 336 87 + 336 87
= 10492 87

120.6