Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Gib alle Werte an, die die Zufallsgröße X annehmen kann.
Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Ereignisse | 0 - 0 - 0 | 0 - 0 - 1 0 - 1 - 0 1 - 0 - 0 | 0 - 1 - 1 1 - 0 - 1 1 - 1 - 0 | 1 - 1 - 1 |
Zufallsgröße WS-Verteilung
Beispiel:
Für die Zufallsgröße X: 'Summe der beiden Augenzahlen' sind folgende Werte möglich:
Zufallsgröße X | X = 4 | X = 5 | X = 6 | X = 8 | X = 9 | X = 12 |
zugehörige Ereignisse | 2 - 2 | 2 - 3 3 - 2 | 3 - 3 | 2 - 6 6 - 2 | 3 - 6 6 - 3 | 6 - 6 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 4 | X = 5 | X = 6 | X = 8 | X = 9 | X = 12 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ | ⋅ + ⋅ | ⋅ + ⋅ | ⋅ |
= | + | + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 4 | 5 | 6 | 8 | 9 | 12 |
P(X=k) |
Zufallsgröße (auch ohne zur.)
Beispiel:
In einer Urne sind vier Kugeln, die mit der Zahl 2 beschriftet sind und vier Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:
Zufallsgröße X | X = 4 | X = 11 | X = 18 |
zugehörige Ereignisse | 2 - 2 | 2 - 9 9 - 2 | 9 - 9 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 4 | X = 11 | X = 18 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ |
= | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 4 | 11 | 18 |
P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint.
Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
Zufallsgröße X | 1 | 2 | 3 |
P(X=k) |
Zufallsgröße rückwärts
Beispiel:
In einer Urne sind 12 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 6 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle).
Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?
Zufallsgröße X | 4 | 8 | 10 | 12 | 14 | 16 |
P(X=k) | ? | ? | ? | ? |
Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.
Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=4) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=16 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.
Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=16) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=16) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = = =
Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 12 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p =
Somit erhalten wir:
n2 = ⋅ 12 = 5
n6 = ⋅ 12 = 4
n8 = ⋅ 12 = 3
Erwartungswerte
Beispiel:
Ein Spieler darf aus einer Urne mit 5 blauen, 4 roten, 8 grünen und 3 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 12€. Bei rot erhält er 20€, bei grün erhält er 5€ und bei weiß erhält er 40€. Wieviel bringt ein Zug durchschnittlich ein?
Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | blau | rot | grün | weiß |
Zufallsgröße xi | 12 | 20 | 5 | 40 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 12⋅ + 20⋅ + 5⋅ + 40⋅
=
=
Einsatz für faires Spiel bestimmen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 2 | 4 | 12 | ? |
Zufallsgröße xi | 2 | 4 | 12 | x |
Zufallsgröße yi (Gewinn) | -7.75 | -5.75 | 2.25 | x-9.75 |
P(X=xi) | ||||
xi ⋅ P(X=xi) | ⋅ x | |||
yi ⋅ P(Y=yi) | ⋅(x-9.75) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 9.75
= 9.75
= 9.75= | |||
= | |⋅ 8 | ||
= | |||
= | | | ||
= |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0= | |||
= | |⋅ 8 | ||
= | |||
= | | | ||
= |
In beiden Fällen ist also der gesuchte Betrag: 40€
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
• Das Spiel mit dem Glücksrad muss fair sein
• Der Einsatz soll 4€ betragen
• Der minimale Auszahlungsbetrag soll 2€ sein
• Der maximale Auszahlungsbetrag soll soll 6€ sein
• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 2 | 6 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 2 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 2 | 6 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 2 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 2 | 6 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 2 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 2 | 3 | 5 | 6 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 1 | 2 |
P(X) = P(Y) | ||||
Winkel | 180 | 0 | 0 | 180 |
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅ + -1⋅ + 1⋅ + 2⋅
=
=
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
In einer Urne sind 5 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st:
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 |
Zufallsgröße xi | 1 | 2 | 3 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅
=
=
=
=
≈ 1.33
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 10 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
As -> As -> As | |
As -> As -> andereKarte | |
As -> andereKarte -> As | |
As -> andereKarte -> andereKarte | |
andereKarte -> As -> As | |
andereKarte -> As -> andereKarte | |
andereKarte -> andereKarte -> As | |
andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 10 | 20 | 30 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
=
=
≈ 8.57
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 18€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 7€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 2€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
1 -> 5 | |
1 -> 6 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
2 -> 5 | |
2 -> 6 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
3 -> 5 | |
3 -> 6 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 | |
4 -> 5 | |
4 -> 6 | |
5 -> 1 | |
5 -> 2 | |
5 -> 3 | |
5 -> 4 | |
5 -> 5 | |
5 -> 6 | |
6 -> 1 | |
6 -> 2 | |
6 -> 3 | |
6 -> 4 | |
6 -> 5 | |
6 -> 6 |
Die Wahrscheinlichkeit für 'Mäxle' ist:
P('1'-'2') + P('2'-'1')
= + =
Die Wahrscheinlichkeit für 'Pasch' ist:
P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= + + + + + =
Die Wahrscheinlichkeit für '60er' ist:
P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= + + + + + + + + + =
Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | Mäxle | Pasch | 60er |
Zufallsgröße xi | 18 | 7 | 2 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 18⋅ + 7⋅ + 2⋅
=
=
=
≈ 2.72